Estimator - Quantified Properties

Quantified Properties

The following definitions and attributes apply:

Error

For a given sample, the "error" of the estimator is defined as

where is the parameter being estimated. Note that the error, e, depends not only on the estimator (the estimation formula or procedure), but on the sample.

Mean squared error

The mean squared error of is defined as the expected value (probability-weighted average, over all samples) of the squared errors; that is,

It is used to indicate how far, on average, the collection of estimates are from the single parameter being estimated. Consider the following analogy. Suppose the parameter is the bull's-eye of a target, the estimator is the process of shooting arrows at the target, and the individual arrows are estimates (samples). Then high MSE means the average distance of the arrows from the bull's-eye is high, and low MSE means the average distance from the bull's-eye is low. The arrows may or may not be clustered. For example, even if all arrows hit the same point, yet grossly miss the target, the MSE is still relatively large. Note, however, that if the MSE is relatively low, then the arrows are likely more highly clustered (than highly dispersed).

Sampling deviation

For a given sample, the sampling deviation of the estimator is defined as

where is the expected value of the estimator. Note that the sampling deviation, d, depends not only on the estimator, but on the sample.

Variance

The variance of is simply the expected value of the squared sampling deviations; that is, . It is used to indicate how far, on average, the collection of estimates are from the expected value of the estimates. Note the difference between MSE and variance. If the parameter is the bull's-eye of a target, and the arrows are estimates, then a relatively high variance means the arrows are dispersed, and a relatively low variance means the arrows are clustered. Some things to note: even if the variance is low, the cluster of arrows may still be far off-target, and even if the variance is high, the diffuse collection of arrows may still be unbiased. Finally, note that even if all arrows grossly miss the target, if they nevertheless all hit the same point, the variance is zero.

Bias

The bias of is defined as . It is the distance between the average of the collection of estimates, and the single parameter being estimated. It also is the expected value of the error, since . If the parameter is the bull's-eye of a target, and the arrows are estimates, then a relatively high absolute value for the bias means the average position of the arrows is off-target, and a relatively low absolute bias means the average position of the arrows is on target. They may be dispersed, or may be clustered. The relationship between bias and variance is analogous to the relationship between accuracy and precision.

Unbiased

The estimator is an unbiased estimator of if and only if . Note that bias is a property of the estimator, not of the estimate. Often, people refer to a "biased estimate" or an "unbiased estimate," but they really are talking about an "estimate from a biased estimator," or an "estimate from an unbiased estimator." Also, people often confuse the "error" of a single estimate with the "bias" of an estimator. Just because the error for one estimate is large, does not mean the estimator is biased. In fact, even if all estimates have astronomical absolute values for their errors, if the expected value of the error is zero, the estimator is unbiased. Also, just because an estimator is biased, does not preclude the error of an estimate from being zero (we may have gotten lucky). The ideal situation, of course, is to have an unbiased estimator with low variance, and also try to limit the number of samples where the error is extreme (that is, have few outliers). Yet unbiasedness is not essential. Often, if just a little bias is permitted, then an estimator can be found with lower MSE and/or fewer outlier sample estimates.

An alternative to the version of "unbiased" above, is "median-unbiased", where the median of the distribution of estimates agrees with the true value; thus, in the long run half the estimates will be too low and half too high. While this applies immediately only to scalar-valued estimators, it can be extended to any measure of central tendency of a distribution: see median-unbiased estimators.

Relationships
  • The MSE, variance, and bias, are related: i.e. mean squared error = variance + square of bias. In particular, for an unbiased estimator, the variance equals the MSE.
  • The standard deviation of an estimator of θ (the square root of the variance), or an estimate of the standard deviation of an estimator of θ, is called the standard error of θ.

Read more about this topic:  Estimator

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)