Euclidean Algorithm - Background — Greatest Common Divisor

Background — Greatest Common Divisor

The Euclidean algorithm calculates the greatest common divisor (GCD) of two natural numbers a and b. The greatest common divisor g is the largest natural number that divides both a and b without leaving a remainder. Synonyms for the GCD include the greatest common factor (GCF), the highest common factor (HCF), and the greatest common measure (GCM). The greatest common divisor is often written as GCD(a, b) or, more simply, as (a, b), although the latter notation is also used for other mathematical concepts, such as two-dimensional vectors.

If GCD(a, b) = 1, then a and b are said to be coprime (or relatively prime). This property does not imply that a or b are themselves prime numbers. For example, neither 6 nor 35 is a prime number, since they both have two prime factors: 6 = 2 × 3 and 35 = 5 × 7. Nevertheless, 6 and 35 are coprime. No natural number other than 1 divides both 6 and 35, since they have no prime factors in common.

Let g = GCD(a, b). Since a and b are both multiples of g, they can be written a = mg and b = ng, and there is no larger number G > g for which this is true. The natural numbers m and n must be coprime, since any common factor can be factored out of m and n to make g greater. Thus, any other number c that divides both a and b must also divide g. The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c.

The GCD can be visualized as follows. Consider a rectangular area a by b, and any common divisor c that divides both a and b exactly. The sides of the rectangle can be divided into segments of length c, which divides the rectangle into a grid of squares of side length c. The greatest common divisor g is the largest value of c for which this is possible. For illustration, a 24-by-60 rectangular area can be divided into a grid of: 1-by-1 squares, 2-by-2 squares, 3-by-3 squares, 4-by-4 squares, 6-by-6 squares or 12-by-12 squares. Therefore, 12 is the greatest common divisor of 24 and 60. A 24-by-60 rectangular area can be divided into a grid of 12-by-12 squares, with two squares along one edge (24/12 = 2) and five squares along the other (60/12 = 5).

The GCD of two numbers a and b is the product of the prime factors shared by the two numbers, where a same prime factor can be used multiple times, but only as long as the product of these factors divides both a and b. For example, since 1386 can be factored into 2 × 3 × 3 × 7 × 11, and 3213 can be factored into 3 × 3 × 3 × 7 × 17, the greatest common divisor of 1386 and 3213 equals 63 = 3 × 3 × 7, the product of their shared prime factors. If two numbers have no prime factors in common, their greatest common divisor is 1 (obtained here as an instance of the empty product), in other words they are coprime. A key advantage of the Euclidean algorithm is that it can find the GCD efficiently without having to compute the prime factors. Factorization of large integers is believed to be a computationally very difficult problem, and the security of many modern cryptography systems is based upon its infeasibility.

Another definition of the GCD is helpful in advanced mathematics, particularly ring theory. The greatest common divisor g of two nonzero numbers a and b is also their smallest positive integral linear combination, that is, the smallest positive number of the form ua + vb where u and v are integers. The set of all integral linear combinations of a and b is actually the same as the set of all multiples of g (mg, where m is an integer). In modern mathematical language, the ideal generated by a and b is the ideal generated by g alone (an ideal generated by a single element is called a principal ideal, and all ideals of the integers are principal ideals). Some properties of the GCD are in fact easier to see with this description, for instance the fact that any common divisor of a and b also divides the GCD (it divides both terms of ua + vb). The equivalence of this GCD definition with the other definitions is described below.

The GCD of three or more numbers equals the product of the prime factors common to all the numbers, but it can also be calculated by repeatedly taking the GCDs of pairs of numbers. For example,

GCD(a, b, c) = GCD(a, GCD(b, c)) = GCD(GCD(a, b), c) = GCD(GCD(a, c), b).

Thus, Euclid's algorithm, which computes the GCD of two integers, suffices to calculate the GCD of arbitrarily many integers.

Read more about this topic:  Euclidean Algorithm

Famous quotes containing the words background, greatest and/or common:

    Silence is the universal refuge, the sequel to all dull discourses and all foolish acts, a balm to our every chagrin, as welcome after satiety as after disappointment; that background which the painter may not daub, be he master or bungler, and which, however awkward a figure we may have made in the foreground, remains ever our inviolable asylum, where no indignity can assail, no personality can disturb us.
    Henry David Thoreau (1817–1862)

    The greatest sweetener of human life is Friendship. To raise this to the highest pitch of enjoyment, is a secret which but few discover.
    Joseph Addison (1672–1719)

    I set forth a humble and inglorious life; that does not matter. You can tie up all moral philosophy with a common and private life just as well as with a life of richer stuff. Each man bears the entire form of man’s estate.
    Michel de Montaigne (1533–1592)