Definition
The factorial function is formally defined by
or recursively defined by
Both of the above definitions incorporate the instance
in the first case by the convention that the product of no numbers at all is 1. This is convenient because:
- There is exactly one permutation of zero objects (with nothing to permute, "everything" is left in place).
- The recurrence relation (n + 1)! = n! × (n + 1), valid for n > 0, extends to n = 0.
- It allows for the expression of many formulae, such as the exponential function, as a power series:
- It makes many identities in combinatorics valid for all applicable sizes. The number of ways to choose 0 elements from the empty set is . More generally, the number of ways to choose (all) n elements among a set of n is .
The factorial function can also be defined for non-integer values using more advanced mathematics, detailed in the section below. This more generalized definition is used by advanced calculators and mathematical software such as Maple or Mathematica.
Read more about this topic: Factorial
Famous quotes containing the word definition:
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)