Faro Shuffle - Group Theory Aspects

Group Theory Aspects

In mathematics, a perfect shuffle can be considered to be an element of the symmetric group.

More generally, in, the perfect shuffle is the permutation that splits the set into 2 piles and interleaves them:

\begin{pmatrix} 1 & 2 & 3 & 4 & \cdots \\
1 & n+1 & 2 & n+2 & \cdots \end{pmatrix}

Formally, it sends

k \mapsto \begin{cases}
2k-1 & k\leq n\\
2(k-n) & k> n
\end{cases}

Analogously, the -perfect shuffle permutation is the element of that splits the set into k piles and interleaves them.

The -perfect shuffle, denote it, is the composition of the -perfect shuffle with an -cycle, so the sign of is:

The sign is thus 4-periodic:

\mbox{sgn}(\rho_n) = (-1)^{\lfloor n/2 \rfloor} = \begin{cases}
+1 & n \equiv 0,1 \pmod{4}\\
-1 & n \equiv 2,3 \pmod{4}
\end{cases}

The first few perfect shuffles are: and are trivial, and is the transposition .

Read more about this topic:  Faro Shuffle

Famous quotes containing the words group, theory and/or aspects:

    Now, honestly: if a large group of ... demonstrators blocked the entrances to St. Patrick’s Cathedral every Sunday for years, making it impossible for worshipers to get inside the church without someone escorting them through screaming crowds, wouldn’t some judge rule that those protesters could keep protesting, but behind police lines and out of the doorways?
    Anna Quindlen (b. 1953)

    Osteopath—One who argues that all human ills are caused by the pressure of hard bone upon soft tissue. The proof of his theory is to be found in the heads of those who believe it.
    —H.L. (Henry Lewis)

    I suppose an entire cabinet of shells would be an expression of the whole human mind; a Flora of the whole globe would be so likewise, or a history of beasts; or a painting of all the aspects of the clouds. Everything is significant.
    Ralph Waldo Emerson (1803–1882)