Fiberglass - Applications

Applications

Fiberglass is an immensely versatile material which combines its light weight with an inherent strength to provide a weather resistant finish, with a variety of surface textures.

The development of fiber reinforced plastic for commercial use was being extensively researched in the 1930s. It was particularly of interest to the aviation industry. Mass production of glass strands was accidentally discovered in 1932 when a researcher at the Owens-Illinois directed a jet of compressed air at a stream of molten glass and produced fibers. Owens joined up with the Corning company in 1935 and the method was adapted by Owens Corning to produce its patented "Fiberglas" (one "s"). A suitable resin for combining the "Fiberglas" with a plastic was developed in 1936 by du Pont. The first ancestor of modern polyester resins is Cyanamid's of 1942. Peroxide curing systems were used by then.

During World War II it was developed as a replacement for the molded plywood used in aircraft radomes (fiberglass being transparent to microwaves). Its first main civilian application was for building of boats and sports car bodies, where it gained acceptance in the 1950s. Its use has broadened to the automotive and sport equipment sectors as well as aircraft, although its use there is now partly being taken over by carbon fiber which weighs less per given volume and is stronger both by volume and by weight. Fiberglass uses also include hot tubs, pipes for drinking water and sewers, office plant display containers and flat roof systems.

Advanced manufacturing techniques such as pre-pregs and fiber rovings extend the applications and the tensile strength possible with fiber-reinforced plastics.

Fiberglass is also used in the telecommunications industry for shrouding the visual appearance of antennas, due to its RF permeability and low signal attenuation properties. It may also be used to shroud the visual appearance of other equipment where no signal permeability is required, such as equipment cabinets and steel support structures, due to the ease with which it can be molded, manufactured and painted to custom designs, to blend in with existing structures or brickwork. Other uses include sheet form made electrical insulators and other structural components commonly found in the power industries.

Because of fiberglass's light weight and durability, it is often used in protective equipment, such as helmets. Many sports utilize fiberglass protective gear, such as modern goaltender masks and newer baseball catcher's masks.

Read more about this topic:  Fiberglass