Finite Field - Some Small Finite Fields

Some Small Finite Fields

F2:

+ 0 1
0 0 1
1 1 0
× 0 1
0 0 0
1 0 1

F3:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1
× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

F4:

+ 0 1 A B
0 0 1 A B
1 1 0 B A
A A B 0 1
B B A 1 0
× 0 1 A B
0 0 0 0 0
1 0 1 A B
A 0 A B 1
B 0 B 1 A
Field of 8 elements represented as matrices integers are modulo 2 element (0) element (1) element (2) element (3) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 element (4) element (5) element (6) element (7) 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 1 0 +/ (0) (1) (2) (3) (4) (5) (6) (7) (0) 0 1 2 3 4 5 6 7 (1) 1 0 4 7 2 6 5 3 (2) 2 4 0 5 1 3 7 6 (3) 3 7 5 0 6 2 4 1 (4) 4 2 1 6 0 7 3 5 (5) 5 6 3 2 7 0 1 4 (6) 6 5 7 4 3 1 0 2 (7) 7 3 6 1 5 4 2 0 x/ (0) (1) (2) (3) (4) (5) (6) (7) (0) 0 0 0 0 0 0 0 0 (1) 0 1 2 3 4 5 6 7 (2) 0 2 3 4 5 6 7 1 (3) 0 3 4 5 6 7 1 2 (4) 0 4 5 6 7 1 2 3 (5) 0 5 6 7 1 2 3 4 (6) 0 6 7 1 2 3 4 5 (7) 0 7 1 2 3 4 5 6 _________________________________________________________ Field of 9 elements represented as matrices integers are modulo 3 element (0) element (1) element (2) 0 0 1 0 0 1 0 0 0 1 1 1 element (3) element (4) element (5) 1 1 1 2 2 0 1 2 2 0 0 2 element (6) element (7) element (8) 0 2 2 2 2 1 2 2 2 1 1 0 +/ (0) (1) (2) (3) (4) (5) (6) (7) (8) (0) 0 1 2 3 4 5 6 7 8 (1) 1 5 3 8 7 0 4 6 2 (2) 2 3 6 4 1 8 0 5 7 (3) 3 8 4 7 5 2 1 0 6 (4) 4 7 1 5 8 6 3 2 0 (5) 5 0 8 2 6 1 7 4 3 (6) 6 4 0 1 3 7 2 8 5 (7) 7 6 5 0 2 4 8 3 1 (8) 8 2 7 6 0 3 5 1 4 x/ (0) (1) (2) (3) (4) (5) (6) (7) (8) (0) 0 0 0 0 0 0 0 0 0 (1) 0 1 2 3 4 5 6 7 8 (2) 0 2 3 4 5 6 7 8 1 (3) 0 3 4 5 6 7 8 1 2 (4) 0 4 5 6 7 8 1 2 3 (5) 0 5 6 7 8 1 2 3 4 (6) 0 6 7 8 1 2 3 4 5 (7) 0 7 8 1 2 3 4 5 6 (8) 0 8 1 2 3 4 5 6 7

_________________________________________________________

F16 is represented by the polynomials a + b x + c x2 + d x3.
a, b, c, and d are integers modulo 2
The polynomials are generated by the powers of x using the rule

x4 = 1 + x.

e ( 0) e ( 1) e ( 2) e ( 3) e ( 4) e ( 5) e ( 6) e ( 7) e ( 8) e ( 9) e (10) e (11) e (12) e (13) e (14) e (15) +/ 0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_10_11_12_13_14_15_ 0_ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1_ 1 0 5 9 15 2 11 14 10 3 8 6 13 12 7 4 2_ 2 5 0 6 10 1 3 12 15 11 4 9 7 14 13 8 3_ 3 9 6 0 7 11 2 4 13 1 12 5 10 8 15 14 4_ 4 15 10 7 0 8 12 3 5 14 2 13 6 11 9 1 5_ 5 2 1 11 8 0 9 13 4 6 15 3 14 7 12 10 6_ 6 11 3 2 12 9 0 10 14 5 7 1 4 15 8 13 7_ 7 14 12 4 3 13 10 0 11 15 6 8 2 5 1 9 8_ 8 10 15 13 5 4 14 11 0 12 1 7 9 3 6 2 9_ 9 3 11 1 14 6 5 15 12 0 13 2 8 10 4 7 10_ 10 8 4 12 2 15 7 6 1 13 0 14 3 9 11 5 11_ 11 6 9 5 13 3 1 8 7 2 14 0 15 4 10 12 12_ 12 13 7 10 6 14 4 2 9 8 3 15 0 1 5 11 13_ 13 12 14 8 11 7 15 5 3 10 9 4 1 0 2 6 14_ 14 7 13 15 9 12 8 1 6 4 11 10 5 2 0 3 15_ 15 4 8 14 1 10 13 9 2 7 5 12 11 6 3 0 x/ 0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_10_11_12_13_14_15_ 0_ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1_ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2_ 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 3_ 0 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 4_ 0 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 5_ 0 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 6_ 0 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 7_ 0 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 8_ 0 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 9_ 0 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 10_ 0 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 11_ 0 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 12_ 0 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 13_ 0 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 14_ 0 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 15_ 0 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14

_________________________________________________________

F25 represented by the numbers a + b√2, a and b are integers modulo 5
generated by powers of 2 + √2

e ( 0) e ( 1) e ( 2) e ( 3) e ( 4)
0 + 0√2 1 + 0√2 2 + 1√2 1 + 4√2 0 + 4√2
e ( 5) e ( 6) e ( 7) e ( 8) e ( 9)
3 + 3√2 2 + 4√2 2 + 0√2 4 + 2√2 2 + 3√2
e (10) e (11) e (12) e (13) e (14)
0 + 3√2 1 + 1√2 4 + 3√2 4 + 0√2 3 + 4√2
e (15) e (16) e (17) e (18) e (19)
4 + 1√2 0 + 1√2 2 + 2√2 3 + 1√2 3 + 0√2
e (20) e (21) e (22) e (23) e (24)
1 + 3√2 3 + 2√2 0 + 2√2 4 + 4√2 1 + 2√2
+/ 0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_10_11_12_13_14_15_16_17_18_19_20_21_22_23_24_ 0_ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1_ 1 7 18 6 3 12 14 19 22 5 20 2 10 0 23 16 11 21 15 13 9 8 24 4 17 2_ 2 18 8 19 7 4 13 15 20 23 6 21 3 11 0 24 17 12 22 16 14 10 9 1 5 3_ 3 6 19 9 20 8 5 14 16 21 24 7 22 4 12 0 1 18 13 23 17 15 11 10 2 4_ 4 3 7 20 10 21 9 6 15 17 22 1 8 23 5 13 0 2 19 14 24 18 16 12 11 5_ 5 12 4 8 21 11 22 10 7 16 18 23 2 9 24 6 14 0 3 20 15 1 19 17 13 6_ 6 14 13 5 9 22 12 23 11 8 17 19 24 3 10 1 7 15 0 4 21 16 2 20 18 7_ 7 19 15 14 6 10 23 13 24 12 9 18 20 1 4 11 2 8 16 0 5 22 17 3 21 8_ 8 22 20 16 15 7 11 24 14 1 13 10 19 21 2 5 12 3 9 17 0 6 23 18 4 9_ 9 5 23 21 17 16 8 12 1 15 2 14 11 20 22 3 6 13 4 10 18 0 7 24 19 10_ 10 20 6 24 22 18 17 9 13 2 16 3 15 12 21 23 4 7 14 5 11 19 0 8 1 11_ 11 2 21 7 1 23 19 18 10 14 3 17 4 16 13 22 24 5 8 15 6 12 20 0 9 12_ 12 10 3 22 8 2 24 20 19 11 15 4 18 5 17 14 23 1 6 9 16 7 13 21 0 13_ 13 0 11 4 23 9 3 1 21 20 12 16 5 19 6 18 15 24 2 7 10 17 8 14 22 14_ 14 23 0 12 5 24 10 4 2 22 21 13 17 6 20 7 19 16 1 3 8 11 18 9 15 15_ 15 16 24 0 13 6 1 11 5 3 23 22 14 18 7 21 8 20 17 2 4 9 12 19 10 16_ 16 11 17 1 0 14 7 2 12 6 4 24 23 15 19 8 22 9 21 18 3 5 10 13 20 17_ 17 21 12 18 2 0 15 8 3 13 7 5 1 24 16 20 9 23 10 22 19 4 6 11 14 18_ 18 15 22 13 19 3 0 16 9 4 14 8 6 2 1 17 21 10 24 11 23 20 5 7 12 19_ 19 13 16 23 14 20 4 0 17 10 5 15 9 7 3 2 18 22 11 1 12 24 21 6 8 20_ 20 9 14 17 24 15 21 5 0 18 11 6 16 10 8 4 3 19 23 12 2 13 1 22 7 21_ 21 8 10 15 18 1 16 22 6 0 19 12 7 17 11 9 5 4 20 24 13 3 14 2 23 22_ 22 24 9 11 16 19 2 17 23 7 0 20 13 8 18 12 10 6 5 21 1 14 4 15 3 23_ 23 4 1 10 12 17 20 3 18 24 8 0 21 14 9 19 13 11 7 6 22 2 15 5 16 24_ 24 17 5 2 11 13 18 21 4 19 1 9 0 22 15 10 20 14 12 8 7 23 3 16 6 x/ 0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_10_11_12_13_14_15_16_17_18_19_20_21_22_23_24_ 0_ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1_ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2_ 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 3_ 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 4_ 0 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 5_ 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 6_ 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 7_ 0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 8_ 0 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 9_ 0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 10_ 0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 11_ 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 12_ 0 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 13_ 0 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 14_ 0 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 15_ 0 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16_ 0 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17_ 0 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18_ 0 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19_ 0 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20_ 0 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21_ 0 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22_ 0 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23_ 0 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24_ 0 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Read more about this topic:  Finite Field

Famous quotes containing the words small, finite and/or fields:

    If you tie a horse to a stake, do you expect he will grow fat? If you pen an Indian up on a small spot of earth, and compel him to stay there, he will not be contented, nor will he grow and prosper. I have asked some of the great white chiefs where they get their authority to say to the Indian that he shall stay in one place, while he sees white men going where they please. They can not tell me.
    Chief Joseph (c. 1840–1904)

    We know then the existence and nature of the finite, because we also are finite and have extension. We know the existence of the infinite and are ignorant of its nature, because it has extension like us, but not limits like us. But we know neither the existence nor the nature of God, because he has neither extension nor limits.
    Blaise Pascal (1623–1662)

    The need to exert power, when thwarted in the open fields of life, is the more likely to assert itself in trifles.
    Charles Horton Cooley (1864–1929)