Fundamental Group - Universal Covering Space

Universal Covering Space

If X is a topological space that is path connected, locally path connected and locally simply connected, then it has a simply connected universal covering space on which the fundamental group π(X,x0) acts freely by deck transformations with quotient space X. This space can be constructed analogously to the fundamental group by taking pairs (x, γ), where x is a point in X and γ is a homotopy class of paths from x0 to x and the action of π(X, x0) is by concatenation of paths. It is uniquely determined as a covering space.

Read more about this topic:  Fundamental Group

Famous quotes containing the words universal, covering and/or space:

    Nothing comes to pass in nature, which can be set down to a flaw therein; for nature is always the same and everywhere one and the same in her efficiency and power of action; that is, nature’s laws and ordinances whereby all things come to pass and change from one form to another, are everywhere and always; so that there should be one and the same method of understanding the nature of all things whatsoever, namely, through nature’s universal laws and rules.
    Baruch (Benedict)

    We have good reason to believe that memories of early childhood do not persist in consciousness because of the absence or fragmentary character of language covering this period. Words serve as fixatives for mental images. . . . Even at the end of the second year of life when word tags exist for a number of objects in the child’s life, these words are discrete and do not yet bind together the parts of an experience or organize them in a way that can produce a coherent memory.
    Selma H. Fraiberg (20th century)

    The woman’s world ... is shown as a series of limited spaces, with the woman struggling to get free of them. The struggle is what the film is about; what is struggled against is the limited space itself. Consequently, to make its point, the film has to deny itself and suggest it was the struggle that was wrong, not the space.
    Jeanine Basinger (b. 1936)