Fungus - Characteristics

Characteristics

Before the introduction of molecular methods for phylogenetic analysis, taxonomists considered fungi to be members of the Plant Kingdom because of similarities in lifestyle: both fungi and plants are mainly immobile, and have similarities in general morphology and growth habitat. Like plants, fungi often grow in soil, and in the case of mushrooms form conspicuous fruiting bodies, which sometimes bear resemblance to plants such as mosses. The fungi are now considered a separate kingdom, distinct from both plants and animals, from which they appear to have diverged around one billion years ago. Some morphological, biochemical, and genetic features are shared with other organisms, while others are unique to the fungi, clearly separating them from the other kingdoms:

Shared features:

  • With other eukaryotes: As other eukaryotes, fungal cells contain membrane-bound nuclei with chromosomes that contain DNA with noncoding regions called introns and coding regions called exons. In addition, fungi possess membrane-bound cytoplasmic organelles such as mitochondria, sterol-containing membranes, and ribosomes of the 80S type. They have a characteristic range of soluble carbohydrates and storage compounds, including sugar alcohols (e.g., mannitol), disaccharides, (e.g., trehalose), and polysaccharides (e.g., glycogen, which is also found in animals).
  • With animals: Fungi lack chloroplasts and are heterotrophic organisms, requiring preformed organic compounds as energy sources.
  • With plants: Fungi possess a cell wall and vacuoles. They reproduce by both sexual and asexual means, and like basal plant groups (such as ferns and mosses) produce spores. Similar to mosses and algae, fungi typically have haploid nuclei.
  • With euglenoids and bacteria: Higher fungi, euglenoids, and some bacteria produce the amino acid -lysine in specific biosynthesis steps, called the α-aminoadipate pathway.
  • The cells of most fungi grow as tubular, elongated, and thread-like (filamentous) structures and are called hyphae, which may contain multiple nuclei and extend at their tips. Each tip contains a set of aggregated vesicles—cellular structures consisting of proteins, lipids, and other organic molecules—called Spitzenkörper. Both fungi and oomycetes grow as filamentous hyphal cells. In contrast, similar-looking organisms, such as filamentous green algae, grow by repeated cell division within a chain of cells.
  • In common with some plant and animal species, more than 60 fungal species display the phenomenon of bioluminescence.

Unique features:

  • Some species grow as single-celled yeasts that reproduce by budding or binary fission. Dimorphic fungi can switch between a yeast phase and a hyphal phase in response to environmental conditions.
  • The fungal cell wall is composed of glucans and chitin; while the former compounds are also found in plants and the latter in the exoskeleton of arthropods, fungi are the only organisms that combine these two structural molecules in their cell wall. In contrast to plants and the oomycetes, fungal cell walls do not contain cellulose.

Most fungi lack an efficient system for long-distance transport of water and nutrients, such as the xylem and phloem in many plants. To overcome these limitations, some fungi, such as Armillaria, form rhizomorphs, that resemble and perform functions similar to the roots of plants. Another characteristic shared with plants includes a biosynthetic pathway for producing terpenes that uses mevalonic acid and pyrophosphate as chemical building blocks. However, plants have an additional terpene pathway in their chloroplasts, a structure fungi do not possess. Fungi produce several secondary metabolites that are similar or identical in structure to those made by plants. Many of the plant and fungal enzymes that make these compounds differ from each other in sequence and other characteristics, which indicates separate origins and evolution of these enzymes in the fungi and plants.

Read more about this topic:  Fungus