Theory of Operation
Gases passing through an ideal gas turbine undergo three thermodynamic processes. These are isentropic compression, isobaric (constant pressure) combustion and isentropic expansion. Together these make up the Brayton cycle.
In a practical gas turbine, gases are first accelerated in either a centrifugal or axial compressor. These gases are then slowed using a diverging nozzle known as a diffuser; these processes increase the pressure and temperature of the flow. In an ideal system this is isentropic. However, in practice energy is lost to heat, due to friction and turbulence. Gases then pass from the diffuser to a combustion chamber, or similar device, where heat is added. In an ideal system this occurs at constant pressure (isobaric heat addition). As there is no change in pressure the specific volume of the gases increases. In practical situations this process is usually accompanied by a slight loss in pressure, due to friction. Finally, this larger volume of gases is expanded and accelerated by nozzle guide vanes before energy is extracted by a turbine. In an ideal system these gases are expanded isentropically and leave the turbine at their original pressure. In practice this process is not isentropic as energy is once again lost to friction and turbulence.
If the device has been designed to power a shaft as with an industrial generator or a turboprop, the exit pressure will be as close to the entry pressure as possible. In practice it is necessary that some pressure remains at the outlet in order to fully expel the exhaust gases. In the case of a jet engine only enough pressure and energy is extracted from the flow to drive the compressor and other components. The remaining high pressure gases are accelerated to provide a jet that can, for example, be used to propel an aircraft.
As with all cyclic heat engines, higher combustion temperatures can allow for greater efficiencies. However, temperatures are limited by ability of the steel, nickel, ceramic, or other materials that make up the engine to withstand high temperatures and stresses. To combat this many turbines feature complex blade cooling systems.
As a general rule, the smaller the engine the higher the rotation rate of the shaft(s) must be to maintain tip speed. Blade tip speed determines the maximum pressure ratios that can be obtained by the turbine and the compressor. This in turn limits the maximum power and efficiency that can be obtained by the engine. In order for tip speed to remain constant, if the diameter of a rotor is reduced by half, the rotational speed must double. For example large Jet engines operate around 10,000 rpm, while micro turbines spin as fast as 500,000 rpm.
Mechanically, gas turbines can be considerably less complex than internal combustion piston engines. Simple turbines might have one moving part: the shaft/compressor/turbine/alternative-rotor assembly (see image above), not counting the fuel system. However, the required precision manufacturing for components and temperature resistant alloys necessary for high efficiency often make the construction of a simple turbine more complicated than piston engines.
More sophisticated turbines (such as those found in modern jet engines) may have multiple shafts (spools), hundreds of turbine blades, movable stator blades, and a vast system of complex piping, combustors and heat exchangers.
Thrust bearings and journal bearings are a critical part of design. Traditionally, they have been hydrodynamic oil bearings, or oil-cooled ball bearings. These bearings are being surpassed by foil bearings, which have been successfully used in micro turbines and auxiliary power units.
Read more about this topic: Gas Turbine
Famous quotes containing the words theory of, theory and/or operation:
“We commonly say that the rich man can speak the truth, can afford honesty, can afford independence of opinion and action;and that is the theory of nobility. But it is the rich man in a true sense, that is to say, not the man of large income and large expenditure, but solely the man whose outlay is less than his income and is steadily kept so.”
—Ralph Waldo Emerson (18031882)
“every subjective phenomenon is essentially connected with a single point of view, and it seems inevitable that an objective, physical theory will abandon that point of view.”
—Thomas Nagel (b. 1938)
“Human knowledge and human power meet in one; for where the cause is not known the effect cannot be produced. Nature to be commanded must be obeyed; and that which in contemplation is as the cause is in operation as the rule.”
—Francis Bacon (15601626)