Genetic Programming - History

History

In 1954, GP began with the evolutionary algorithms first used by Nils Aall Barricelli applied to evolutionary simulations. In the 1960s and early 1970s, evolutionary algorithms became widely recognized as optimization methods. Ingo Rechenberg and his group were able to solve complex engineering problems through evolution strategies as documented in his 1971 PhD thesis and the resulting 1973 book. John Holland was highly influential during the 1970s.

In 1964, Lawrence J. Fogel, one of the earliest practitioners of the GP methodology, applied evolutionary algorithms to the problem of discovering finite-state automata. Later GP-related work grew out of the learning classifier system community, which developed sets of sparse rules describing optimal policies for Markov decision processes. The first statement of modern "tree-based" Genetic Programming (that is, procedural languages organized in tree-based structures and operated on by suitably defined GA-operators) was given by Nichael L. Cramer (1985). This work was later greatly expanded by John R. Koza, a main proponent of GP who has pioneered the application of genetic programming in various complex optimization and search problems. Gianna Giavelli, a student of Koza's, later pionered the use of genetic programming as a technique to model DNA expression.

In the 1990s, GP was mainly used to solve relatively simple problems because it is very computationally intensive. Recently GP has produced many novel and outstanding results in areas such as quantum computing, electronic design, game playing, sorting, and searching, due to improvements in GP technology and the exponential growth in CPU power. These results include the replication or development of several post-year-2000 inventions. GP has also been applied to evolvable hardware as well as computer programs.

Developing a theory for GP has been very difficult and so in the 1990s GP was considered a sort of outcast among search techniques. But after a series of breakthroughs in the early 2000s, the theory of GP has had a formidable and rapid development. So much so that it has been possible to build exact probabilistic models of GP (schema theories, Markov chain models and meta-optimization algorithms).

Read more about this topic:  Genetic Programming

Famous quotes containing the word history:

    The myth of independence from the mother is abandoned in mid- life as women learn new routes around the mother—both the mother without and the mother within. A mid-life daughter may reengage with a mother or put new controls on care and set limits to love. But whatever she does, her child’s history is never finished.
    Terri Apter (20th century)

    The history of all countries shows that the working class exclusively by its own effort is able to develop only trade-union consciousness.
    Vladimir Ilyich Lenin (1870–1924)

    The history of the world is none other than the progress of the consciousness of freedom.
    Georg Wilhelm Friedrich Hegel (1770–1831)