Overview
Some organisms have multiple copies of chromosomes: diploid, triploid, tetraploid and so on. In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half the number of chromosomes of the somatic cell and the genome is a full set of chromosomes in a gamete. In haploid organisms, including cells of bacteria, archaea, and in organelles including mitochondria and chloroplasts, or viruses, that similarly contain genes, the single or set of circular and/or linear chains of DNA (or RNA for some viruses), likewise constitute the genome. The term genome can be applied specifically to mean that stored on a complete set of nuclear DNA (i.e., the "nuclear genome") but can also be applied to that stored within organelles that contain their own DNA, as with the "mitochondrial genome" or the "chloroplast genome". Additionally, the genome can comprise nonchromosomal genetic elements such as viruses, plasmids, and transposable elements.
When people say that the genome of a sexually reproducing species has been "sequenced", typically they are referring to a determination of the sequences of one set of autosomes and one of each type of sex chromosome, which together represent both of the possible sexes. Even in species that exist in only one sex, what is described as a "genome sequence" may be a composite read from the chromosomes of various individuals. Colloquially, the phrase "genetic makeup" is sometimes used to signify the genome of a particular individual or organism. The study of the global properties of genomes of related organisms is usually referred to as genomics, which distinguishes it from genetics which generally studies the properties of single genes or groups of genes.
Both the number of base pairs and the number of genes vary widely from one species to another, and there is only a rough correlation between the two (an observation known as the C-value paradox). At present, the highest known number of genes is around 60,000, for the protozoan causing trichomoniasis (see List of sequenced eukaryotic genomes), almost three times as many as in the human genome.
An analogy to the human genome stored on DNA is that of instructions stored in a book:
- The book (genome) would contain 23 chapters (chromosomes);
- Each chapter contains 48 to 250 million letters (A,C,G,T) without spaces;
- Hence, the book contains over 3.2 billion letters total;
- The book fits into a cell nucleus the size of a pinpoint;
- At least one copy of the book (all 23 chapters) is contained in most cells of our body. The only exception in humans is found in mature red blood cells which become enucleated during development and therefore lack a genome.
Read more about this topic: Genome