Location
In mammals, gluconeogenesis is restricted to the liver, the kidney and the intestine. However these organs use somewhat different gluconeogenic precursors. Liver uses primarily lactate and alanine while kidney uses lactate and glutamine. Propionate is the principal substrate for gluconeogenesis in the ruminant liver, and the ruminant liver may make increased use of gluconeogenic amino acids, e.g. alanine, when glucose demand is increased. The capacity of liver cells to use lactate for gluconeogenesis declines from the preruminant stage to the ruminant stage in calves and lambs. In sheep kidney tissue, very high rates of gluconeogenesis from propionate have been observed. The intestine uses mostly glutamine and glycerol.
In all species, the formation of oxaloacetate from pyruvate and TCA cycle intermediates is restricted to the mitochondrion, and the enzymes that convert Phosphoenolpyruvic acid (PEP) to glucose are found in the cytosol. The location of the enzyme that links these two parts of gluconeogenesis by converting oxaloacetate to PEP, PEP carboxykinase, is variable by species: it can be found entirely within the mitochondria, entirely within the cytosol, or dispersed evenly between the two, as it is in humans. Transport of PEP across the mitochondrial membrane is accomplished by dedicated transport proteins; however no such proteins exist for oxaloacetate. Therefore, in species that lack intra-mitochondrial PEP, oxaloacetate must be converted into malate or asparate, exported from the mitochondrion, and converted back into oxaloacetate in order to allow gluconeogenesis to continue.
Read more about this topic: Gluconeogenesis