Generalizations
Group-like structures | |||||
Totality* | Associativity | Identity | Inverses | Commutativity | |
---|---|---|---|---|---|
Magma | Yes | No | No | No | No |
Semigroup | Yes | Yes | No | No | No |
Monoid | Yes | Yes | Yes | No | No |
Group | Yes | Yes | Yes | Yes | No |
Abelian Group | Yes | Yes | Yes | Yes | Yes |
Loop | Yes | No | Yes | Yes | No |
Quasigroup | Yes | No | No | Yes | No |
Groupoid | No | Yes | Yes | Yes | No |
Category | No | Yes | Yes | No | No |
Semicategory | No | Yes | No | No | No |
In abstract algebra, more general structures are defined by relaxing some of the axioms defining a group. For example, if the requirement that every element has an inverse is eliminated, the resulting algebraic structure is called a monoid. The natural numbers N (including 0) under addition form a monoid, as do the nonzero integers under multiplication (Z \ {0}, ·), see above. There is a general method to formally add inverses to elements to any (abelian) monoid, much the same way as (Q \ {0}, ·) is derived from (Z \ {0}, ·), known as the Grothendieck group. Groupoids are similar to groups except that the composition a • b need not be defined for all a and b. They arise in the study of more complicated forms of symmetry, often in topological and analytical structures, such as the fundamental groupoid or stacks. Finally, it is possible to generalize any of these concepts by replacing the binary operation with an arbitrary n-ary one (i.e. an operation taking n arguments). With the proper generalization of the group axioms this gives rise to an n-ary group. The table gives a list of several structures generalizing groups.
Read more about this topic: Group (mathematics)