In mathematics and abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have strongly influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced tremendous advances and have become subject areas in their own right.
Various physical systems, such as crystals and the hydrogen atom, can be modelled by symmetry groups. Thus group theory and the closely related representation theory have many applications in physics and chemistry.
One of the most important mathematical achievements of the 20th century was the collaborative effort, taking up more than 10,000 journal pages and mostly published between 1960 and 1980, that culminated in a complete classification of finite simple groups.
Read more about Group Theory: History, Main Classes of Groups, Combinatorial and Geometric Group Theory, Representation of Groups, Connection of Groups and Symmetry, Applications of Group Theory
Famous quotes containing the words group and/or theory:
“Remember that the peer group is important to young adolescents, and theres nothing wrong with that. Parents are often just as important, however. Dont give up on the idea that you can make a difference.”
—The Lions Clubs International and the Quest Nation. The Surprising Years, I, ch.5 (1985)
“Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.”
—Willard Van Orman Quine (b. 1908)