Hausdorff Dimension

In mathematics, the Hausdorff dimension (also known as the Hausdorff–Besicovitch dimension) is an extended non-negative real number associated with any metric space. The Hausdorff dimension generalizes the notion of the dimension of a real vector space. That is, the Hausdorff dimension of an n-dimensional inner product space equals n. This means, for example, the Hausdorff dimension of a point is zero, the Hausdorff dimension of a line is one, and the Hausdorff dimension of the plane is two. There are, however, many irregular sets that have noninteger Hausdorff dimension. The concept was introduced in 1918 by the mathematician Felix Hausdorff. Many of the technical developments used to compute the Hausdorff dimension for highly irregular sets were obtained by Abram Samoilovitch Besicovitch.

Read more about Hausdorff Dimension:  Intuition, Formal Definition, Examples, Self-similar Sets, The Hausdorff Dimension Theorem

Famous quotes containing the word dimension:

    By intervening in the Vietnamese struggle the United States was attempting to fit its global strategies into a world of hillocks and hamlets, to reduce its majestic concerns for the containment of communism and the security of the Free World to a dimension where governments rose and fell as a result of arguments between two colonels’ wives.
    Frances Fitzgerald (b. 1940)