Table of Specific Heat Capacities
See also: List of thermal conductivitiesNote that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong-Petit limit of 25 J/(mol·K) = 3 R per mole of atoms (see the last column of this table). Paraffin, for example, has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).
In the last column, major departures of solids at standard temperatures from the Dulong-Petit law value of 3R, are usually due to low atomic weight plus high bond strength (as in diamond) causing some vibration modes to have too much energy to be available to store thermal energy at the measured temperature. For gases, departure from 3R per mole of atoms in this table is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to other atoms, as happens in many solids.
Substance | Phase | (mass) specific heat capacity cp or cm J·g−1·K−1 |
Constant pressure molar heat capacity Cp,m J·mol−1·K−1 |
Constant volume molar heat capacity Cv,m J·mol−1·K−1 |
Volumetric heat capacity Cv J·cm−3·K−1 |
Constant vol. atom-molar heat capacity in units of R Cv,m(atom) atom-mol−1 |
---|---|---|---|---|---|---|
Air (Sea level, dry, 0 °C (273.15 K)) |
gas | 1.0035 | 29.07 | 20.7643 | 0.001297 | ~ 1.25 R |
Air (typical room conditionsA) |
gas | 1.012 | 29.19 | 20.85 | 0.00121 | ~ 1.25 R |
Aluminium | solid | 0.897 | 24.2 | 2.422 | 2.91 R | |
Ammonia | liquid | 4.700 | 80.08 | 3.263 | 3.21 R | |
Animal tissue (incl. human) |
mixed | 3.5 | 3.7* | |||
Antimony | solid | 0.207 | 25.2 | 1.386 | 3.03 R | |
Argon | gas | 0.5203 | 20.7862 | 12.4717 | 1.50 R | |
Arsenic | solid | 0.328 | 24.6 | 1.878 | 2.96 R | |
Beryllium | solid | 1.82 | 16.4 | 3.367 | 1.97 R | |
Bismuth | solid | 0.123 | 25.7 | 1.20 | 3.09 R | |
Cadmium | solid | 0.231 | 26.02 | 3.13 R | ||
Carbon dioxide CO2 | gas | 0.839* | 36.94 | 28.46 | 1.14 R | |
Chromium | solid | 0.449 | 23.35 | 2.81 R | ||
Copper | solid | 0.385 | 24.47 | 3.45 | 2.94 R | |
Diamond | solid | 0.5091 | 6.115 | 1.782 | 0.74 R | |
Ethanol | liquid | 2.44 | 112 | 1.925 | 1.50 R | |
Gasoline (octane) | liquid | 2.22 | 228 | 1.64 | 1.05 R | |
Glass | solid | 0.84 | ||||
Gold | solid | 0.129 | 25.42 | 2.492 | 3.05 R | |
Granite | solid | 0.790 | 2.17 | |||
Graphite | solid | 0.710 | 8.53 | 1.534 | 1.03 R | |
Helium | gas | 5.1932 | 20.7862 | 12.4717 | 1.50 R | |
Hydrogen | gas | 14.30 | 28.82 | 1.23 R | ||
Hydrogen sulfide H2S | gas | 1.015* | 34.60 | 1.05 R | ||
Iron | solid | 0.450 | 25.1 | 3.537 | 3.02 R | |
Lead | solid | 0.129 | 26.4 | 1.44 | 3.18 R | |
Lithium | solid | 3.58 | 24.8 | 1.912 | 2.98 R | |
Lithium at 181 °C | liquid | 4.379 | 30.33 | 2.242 | 3.65 R | |
Magnesium | solid | 1.02 | 24.9 | 1.773 | 2.99 R | |
Mercury | liquid | 0.1395 | 27.98 | 1.888 | 3.36 R | |
Methane at 2 °C | gas | 2.191 | 35.69 | 0.66 R | ||
Methanol (298 K) | liquid | 2.14 | 68.62 | 1.38 R | ||
Nitrogen | gas | 1.040 | 29.12 | 20.8 | 1.25 R | |
Neon | gas | 1.0301 | 20.7862 | 12.4717 | 1.50 R | |
Oxygen | gas | 0.918 | 29.38 | 21.0 | 1.26 R | |
Paraffin wax C25H52 |
solid | 2.5 (ave) | 900 | 2.325 | 1.41 R | |
Polyethylene (rotomolding grade) |
solid | 2.3027 | ||||
Polyethylene (rotomolding grade) |
liquid | 2.9308 | ||||
Silica (fused) | solid | 0.703 | 42.2 | 1.547 | 1.69 R | |
Silver | solid | 0.233 | 24.9 | 2.44 | 2.99 R | |
Sodium | solid | 1.230 | 28.23 | 3.39 R | ||
Steel | solid | 0.466 | ||||
Tin | solid | 0.227 | 27.112 | 3.26 R | ||
Titanium | solid | 0.523 | 26.060 | 3.13 R | ||
Tungsten | solid | 0.134 | 24.8 | 2.58 | 2.98 R | |
Uranium | solid | 0.116 | 27.7 | 2.216 | 3.33 R | |
Water at 100 °C (steam) | gas | 2.080 | 37.47 | 28.03 | 1.12 R | |
Water at 25 °C | liquid | 4.1813 | 75.327 | 74.53 | 4.1796 | 3.02 R |
Water at 100 °C | liquid | 4.1813 | 75.327 | 74.53 | 4.2160 | 3.02 R |
Water at −10 °C (ice) | solid | 2.11 | 38.09 | 1.938 | 1.53 R | |
Zinc | solid | 0.387 | 25.2 | 2.76 | 3.03 R | |
Substance | Phase | Cp J/(g·K) |
Cp,m J/(mol·K) |
Cv,m J/(mol·K) |
Volumetric heat capacity J/(cm3·K) |
Read more about this topic: Heat Capacity
Famous quotes containing the words table of, table, specific, heat and/or capacities:
“A sigh for every so many breath,
And for every so many sigh a death.
Thats what I always tell my wife
Is the multiplication table of life.”
—Robert Frost (18741963)
“Language was vigorous because, because ... editors usually laid all the cards on the table so as to leave their hands ... free for more persuasive arguments! The citizenry at large retaliated as best they could.”
—State of Utah, U.S. public relief program (1935-1943)
“The more specific idea of evolution now reached isa change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.”
—Herbert Spencer (18201903)
“The hotel was once where things coalesced, where you could meet both townspeople and travelers. Not so in a motel. No matter how you build it, the motel remains the haunt of the quick and dirty, where the only locals are Chamber of Commerce boys every fourth Thursday. Who ever heard the returning traveler exclaim over one of the great motels of the world he stayed in? Motels can be big, but never grand.”
—William Least Heat Moon [William Trogdon] (b. 1939)
“The ability to secure an independent livelihood and honorable employ suited to her education and capacities is the only true foundation of the social elevation of woman, even in the very highest classes of society. While she continues to be educated only to be somebodys wife, and is left without any aim in life till that somebody either in love, or in pity, or in selfish regard at last grants her the opportunity, she can never be truly independent.”
—Catherine E. Beecher (18001878)