Heritability

The heritability of a trait within a population is the proportion of observable differences in a trait between individuals within a population that is due to genetic differences. Factors including genetics, environment and random chance can all contribute to the variation between individuals in their observable characteristics (in their "phenotypes"). Heritability thus analyzes the relative contributions of differences in genetic and non-genetic factors to the total phenotypic variance in a population. For instance, some humans in a population are taller than others; heritability attempts to identify how much genetics are playing a role in part of the population being extra tall.

Heritability is measured by estimating the relative contributions of genetic and non-genetic differences to the total phenotypic variation in a population. Heritability is an important concept in quantitative genetics, particularly in selective breeding and behaviour genetics (for instance twin studies), but is less widely used in population genetics.

Heritability measures the fraction of phenotype variability that can be attributed to genetic variation. This is not the same as saying that this fraction of an individual phenotype is caused by genetics. In addition, heritability can change without any genetic change occurring (e.g. when the environment starts contributing to more variation). A case in point, consider that both genes and environment have the potential to influence intelligence. Heritability could increase if genetic variation increases, causing individuals to show more phenotypic variation (e.g. to show different levels of intelligence). On the other hand, heritability might also increase if the environmental variation decreases, causing individuals to show less phenotypic variation (e.g. to show more similar levels of intelligence). Heritability is increasing because genetics are contributing more variation, or because non-genetic factors are contributing less variation; what matters is the relative contribution. Here we see why heritability is specific to a particular population in a particular environment.

The extent of dependence of phenotype on environment can also be a function of the genes involved. Matters of heritability are complicated because genes may canalize a phenotype, making its expression almost inevitable in all occurring environments. Individuals with the same genotype can also exhibit different phenotypes through a mechanism called phenotypic plasticity, which makes heritability difficult to measure in some cases. Recent insights in molecular biology have identified changes in transcriptional activity of individual genes associated with environmental changes. However, there are a large number of genes whose transcription is not affected by the environment.

Read more about Heritability:  Overview, Definition, Estimating Heritability, Estimation Methods, Analysis of Variance Methods of Estimation, Response To Selection, Controversies