Kernel of A Homomorphism
Any homomorphism f : X → Y defines an equivalence relation ~ on X by a ~ b if and only if f(a) = f(b). The relation ~ is called the kernel of f. It is a congruence relation on X. The quotient set X/~ can then be given an object-structure in a natural way, i.e. * = . In that case the image of X in Y under the homomorphism f is necessarily isomorphic to X/~; this fact is one of the isomorphism theorems. Note in some cases (e.g. groups or rings), a single equivalence class K suffices to specify the structure of the quotient; so we can write it X/K. (X/K is usually read as "X mod K".) Also in these cases, it is K, rather than ~, that is called the kernel of f (cf. normal subgroup).
Read more about this topic: Homomorphism
Famous quotes containing the words kernel of and/or kernel:
“We should never stand upon ceremony with sincerity. We should never cheat and insult and banish one another by our meanness, if there were present the kernel of worth and friendliness. We should not meet thus in haste.”
—Henry David Thoreau (18171862)
“After nights thunder far away had rolled
The fiery day had a kernel sweet of cold”
—Edward Thomas (18781917)