Hyperbola - Reflections and Tangent Lines

Reflections and Tangent Lines

The ancient Greek geometers recognized a reflection property of hyperbolas. If a ray of light emerges from one focus and is reflected from the hyperbola, the light-ray appears to have come from the other focus. Equivalently, by reversing the direction of the light, rays directed at one of the foci from the exterior of the hyperbola are reflected towards the other focus. This property is analogous to the property of ellipses that a ray emerging from one focus is reflected from the ellipse directly towards the other focus (rather than away as in the hyperbola). Expressed mathematically, lines drawn from each focus to the same point on the hyperbola intersect it at equal angles; the tangent line to a hyperbola at a point P bisects the angle formed with the two foci, F1PF2.

Tangent lines to a hyperbola have another remarkable geometrical property. If a tangent line at a point T intersects the asymptotes at two points K and L, then T bisects the line segment KL, and the product of distances to the hyperbola's center, OK×OL is a constant.

Read more about this topic:  Hyperbola

Famous quotes containing the words reflections and/or lines:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    Scholars and artists thrown together are often annoyed at the puzzle of where they differ. Both work from knowledge; but I suspect they differ most importantly in the way their knowledge is come by. Scholars get theirs with conscientious thoroughness along projected lines of logic; poets theirs cavalierly and as it happens in and out of books. They stick to nothing deliberately, but let what will stick to them like burrs where they walk in the fields.
    Robert Frost (1874–1963)