Hyperbola - Relation To Other Conic Sections

Relation To Other Conic Sections

There are three major types of conic sections: hyperbolas, ellipses and parabolas. Since the parabola may be seen as a limiting case poised exactly between an ellipse and a hyperbola, there are effectively only two major types, ellipses and hyperbolas. These two types are related in that formulae for one type can often be applied to the other.

The canonical equation for a hyperbola is


\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1.

Any hyperbola can be rotated so that it is east-west opening and positioned with its center at the origin, so that the equation describing it is this canonical equation.

The canonical equation for the hyperbola may be seen as a version of the corresponding ellipse equation


\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1

in which the semi-minor axis length b is imaginary. That is, if in the ellipse equation b is replaced by ib where b is real, one obtains the hyperbola equation.

Similarly, the parametric equations for a hyperbola and an ellipse are expressed in terms of hyperbolic and trigonometric functions, respectively, which are again related by an imaginary number, e.g.,


\cosh \mu = \cos i\mu

Hence, many formulae for the ellipse can be extended to hyperbolas by adding the imaginary unit i in front of the semi-minor axis b and the angle. For example, the arc length of a segment of an ellipse can be determined using an incomplete elliptic integral of the second kind. The corresponding arclength of a hyperbola is given by the same function with imaginary parameters b and μ, namely, ib E(iμ, c).

Read more about this topic:  Hyperbola

Famous quotes containing the words relation to, relation and/or sections:

    Any relation to the land, the habit of tilling it, or mining it, or even hunting on it, generates the feeling of patriotism. He who keeps shop on it, or he who merely uses it as a support to his desk and ledger, or to his manufactory, values it less.
    Ralph Waldo Emerson (1803–1882)

    You know there are no secrets in America. It’s quite different in England, where people think of a secret as a shared relation between two people.
    —W.H. (Wystan Hugh)

    That we can come here today and in the presence of thousands and tens of thousands of the survivors of the gallant army of Northern Virginia and their descendants, establish such an enduring monument by their hospitable welcome and acclaim, is conclusive proof of the uniting of the sections, and a universal confession that all that was done was well done, that the battle had to be fought, that the sections had to be tried, but that in the end, the result has inured to the common benefit of all.
    William Howard Taft (1857–1930)