Related Polyhedra and Polytopes
The icosahedron can be transformed by a truncation sequence into its dual, the dodecahedron:
{5,3} | t0,1{5,3} | t1{5,3} | t0,1{3,5} | {3,5} | t0,2{5,3} | t0,1,2{5,3} | s{5,3} |
---|---|---|---|---|---|---|---|
As a snub tetrahedron, and alternation of a truncated octahedron it also exists in the tetrahedral and octahedral symmetry families:
{3,3} | t0,1{3,3} | t1{3,3} | t1,2{3,3} | t2{3,3} | t0,2{3,3} | t0,1,2{3,3} | s{3,3} |
---|---|---|---|---|---|---|---|
{4,3} | t0,1{4,3} | t1{4,3} | t0,1{3,4} | {3,4} | t0,2{4,3} | t0,1,2{4,3} | s{4,3} | h0{4,3} | h1,2{4,3} |
---|---|---|---|---|---|---|---|---|---|
This polyhedron is topologically related as a part of sequence of regular polyhedra with Schläfli symbols {3,n}, continuing into the hyperbolic plane.
{3,3} |
{3,4} |
{3,5} |
{3,6} |
{3,7} |
{3,8} |
{3,9} |
The regular icosahedron, seen as a snub tetrahedron, is a member of a sequence of snubbed polyhedra and tilings with vertex figure (3.3.3.3.n) and Coxeter–Dynkin diagram . These figures and their duals have (n32) rotational symmetry, being in the Euclidean plane for n=6, and hyperbolic plane for any higher n. The series can be considered to begin with n=2, with one set of faces degenerated into digons.
Symmetry | 232 + D3 |
332 + T |
432 + O |
532 + I |
632 + P6 |
732 + |
832 + |
---|---|---|---|---|---|---|---|
Order | 6 | 12 | 24 | 60 | ∞ | ||
Snub figure |
3.3.3.3.2 |
3.3.3.3.3 |
3.3.3.3.4 |
3.3.3.3.5 |
3.3.3.3.6 |
3.3.3.3.7 |
3.3.3.3.8 |
Coxeter Schläfli |
s{2,3} |
s{3,3} |
s{4,3} |
s{5,3} |
s{6,3} |
s{7,3} |
s{8,3} |
Snub dual figure |
V3.3.3.3.2 |
V3.3.3.3.3 |
V3.3.3.3.4 |
V3.3.3.3.5 |
V3.3.3.3.6 |
V3.3.3.3.7 |
|
Coxeter |
The icosahedron shares its vertex arrangement with three Kepler–Poinsot solids. The great dodecahedron also has the same edge arrangement.
Picture | Great dodecahedron |
Small stellated dodecahedron |
Great icosahedron |
---|---|---|---|
Coxeter-Dynkin |
The icosahedron can tessellate hyperbolic space in the order-3 icosahedral honeycomb, with 3 icosahedra around each edge, 12 icosahedra around each vertex, with Schläfli symbol {3,5,3}. It is one of four regular tessellations in the hyperbolic 3-space.
It is shown here as an edge framework in a Poincaré disk model, with one icosahedron visible in the center. |
Read more about this topic: Icosahedron
Famous quotes containing the word related:
“No being exists or can exist which is not related to space in some way. God is everywhere, created minds are somewhere, and body is in the space that it occupies; and whatever is neither everywhere nor anywhere does not exist. And hence it follows that space is an effect arising from the first existence of being, because when any being is postulated, space is postulated.”
—Isaac Newton (16421727)