IEEE 802.11 - Channels and International Compatibility

Channels and International Compatibility

See also: List of WLAN channels

802.11 divides each of the above-described bands into channels, analogous to the way radio and TV broadcast bands are sub-divided. For example the 2.4000–2.4835 GHz band is divided into 13 channels spaced 5 MHz apart, with channel 1 centered on 2.412 GHz and 13 on 2.472 GHz (to which Japan added a 14th channel 12 MHz above channel 13 which was only allowed for 802.11b). 802.11b was based on DSSS with a total channel width of 22 MHz and did not have steep skirts. Consequently only three channels do not overlap. Even now, many devices are shipped with channels 1, 6 and 11 as preset options even though with the newer 802.11g standard there are four non-overlapping channels - 1, 5, 9 and 13. There are now four because the OFDM modulated 802.11g channels are 20 MHz wide.

Availability of channels is regulated by country, constrained in part by how each country allocates radio spectrum to various services. At one extreme, Japan permits the use of all 14 channels for 802.11b, while other countries such as Spain initially allowed only channels 10 and 11, and France only allowed 10, 11, 12 and 13. They now allow channels 1 through 13. North America and some Central and South American countries allow only 1 through 11.

In addition to specifying the channel centre frequency, 802.11 also specifies (in Clause 17) a spectral mask defining the permitted power distribution across each channel. The mask requires the signal be attenuated a minimum of 20 dB from its peak amplitude at ±11 MHz from the centre frequency, the point at which a channel is effectively 22 MHz wide. One consequence is that stations can only use every fourth or fifth channel without overlap, typically 1, 6 and 11 in the Americas, and in theory, 1, 5, 9 and 13 in Europe although 1, 6, and 11 is typical there too. Another is that channels 1–13 effectively require the band 2.401–2.483 GHz, the actual allocations being, for example, 2.400–2.4835 GHz in the UK, 2.402–2.4735 GHz in the US, etc.

Since the spectral mask only defines power output restrictions up to ±11 MHz from the center frequency to be attenuated by −50 dBr, it is often assumed that the energy of the channel extends no further than these limits. It is more correct to say that, given the separation between channels 1, 6, and 11, the signal on any channel should be sufficiently attenuated to minimally interfere with a transmitter on any other channel. Due to the near-far problem a transmitter can impact (desense) a receiver on a "non-overlapping" channel, but only if it is close to the victim receiver (within a meter) or operating above allowed power levels.

Although the statement that channels 1, 6, and 11 are "non-overlapping" is limited to spacing or product density, the 1–6–11 guideline has merit. If transmitters are closer together than channels 1, 6, and 11 (for example, 1, 4, 7, and 10), overlap between the channels may cause unacceptable degradation of signal quality and throughput. However, overlapping channels may be used under certain circumstances. This way, more channels are available.

A regdomain in IEEE 802.11 is a regulatory region. Different countries define different levels of allowable transmitter power, time that a channel can be occupied, and different available channels. Domain codes are specified for the United States, Canada, ETSI (Europe), Spain, France, Japan, and China.

Most wifi devices default to regdomain 0, which means least common denominator settings, i.e. the device will not transmit at a power above the allowable power in any nation, nor will it use frequencies that are not permitted in any nation.

The regdomain setting is often made difficult or impossible to change so that the end users do not conflict with local regulatory agencies such as the Federal Communications Commission.

Read more about this topic:  IEEE 802.11

Famous quotes containing the words channels and and/or channels:

    Not too many years ago, a child’s experience was limited by how far he or she could ride a bicycle or by the physical boundaries that parents set. Today ... the real boundaries of a child’s life are set more by the number of available cable channels and videotapes, by the simulated reality of videogames, by the number of megabytes of memory in the home computer. Now kids can go anywhere, as long as they stay inside the electronic bubble.
    Richard Louv (20th century)

    As every pool reflects the image of the sun, so every thought and thing restores us an image and creature of the supreme Good. The universe is perforated by a million channels for his activity. All things mount and mount.
    Ralph Waldo Emerson (1803–1882)