In Electric Circuits
The effect of an inductor in a circuit is to oppose changes in current through it by developing a voltage across it proportional to the rate of change of the current. An ideal inductor would offer no resistance to a constant direct current; however, only superconducting inductors have truly zero electrical resistance.
The relationship between the time-varying voltage v(t) across an inductor with inductance L and the time-varying current i(t) passing through it is described by the differential equation:
When there is a sinusoidal alternating current (AC) through an inductor, a sinusoidal voltage is induced. The amplitude of the voltage is proportional to the product of the amplitude (IP) of the current and the frequency (f) of the current.
In this situation, the phase of the current lags that of the voltage by π/2.
If an inductor is connected to a direct current source with value I via a resistance R, and then the current source is short-circuited, the differential relationship above shows that the current through the inductor will discharge with an exponential decay:
Read more about this topic: Inductor
Famous quotes containing the words electric and/or circuits:
“Suddenly Im not half the girl
I used to be.
Theres a shadow hanging over me . . .
From me to you out of my electric devil....”
—Anne Sexton (19281974)
“The Buddha, the Godhead, resides quite as comfortably in the circuits of a digital computer or the gears of a cycle transmission as he does at the top of a mountain or in the petals of a flower.”
—Robert M. Pirsig (b. 1928)