Examples of Inference
Greek philosophers defined a number of syllogisms, correct three part inferences, that can be used as building blocks for more complex reasoning. We begin with the most famous of them all:
- All men are mortal
- Socrates is a man
- Therefore, Socrates is mortal.
The reader can check that the premises and conclusion are true, but Logic is concerned with inference: does the truth of the conclusion follow from that of the premises?
The validity of an inference depends on the form of the inference. That is, the word "valid" does not refer to the truth of the premises or the conclusion, but rather to the form of the inference. An inference can be valid even if the parts are false, and can be invalid even if the parts are true. But a valid form with true premises will always have a true conclusion.
For example, consider the form of the following symbological track:
- All fruits are sweet.
- A banana is a fruit.
- Therefore, a banana is sweet.
For the conclusion to be necessarily true, the premises need to be true.
Now we turn to an invalid form.
- All A are B.
- C is a B.
- Therefore, C is an A.
To show that this form is invalid, we demonstrate how it can lead from true premises to a false conclusion.
- All apples are fruit. (Correct)
- Bananas are fruit. (Correct)
- Therefore, bananas are apples. (Wrong)
A valid argument with false premises may lead to a false conclusion:
- All tall people are Greek.
- John Lennon was tall.
- Therefore, John Lennon was Greek.
When a valid argument is used to derive a false conclusion from false premises, the inference is valid because it follows the form of a correct inference.
A valid argument can also be used to derive a true conclusion from false premises:
- All tall people are musicians
- John Lennon was tall
- Therefore, John Lennon was a musician
In this case we have two false premises that imply a true conclusion.
Read more about this topic: Inference
Famous quotes containing the words examples of, examples and/or inference:
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“Rules and particular inferences alike are justified by being brought into agreement with each other. A rule is amended if it yields an inference we are unwilling to accept; an inference is rejected if it violates a rule we are unwilling to amend. The process of justification is the delicate one of making mutual adjustments between rules and accepted inferences; and in the agreement achieved lies the only justification needed for either.”
—Nelson Goodman (b. 1906)