First-order Properties
In extending the real numbers to include infinite and infinitesimal quantities, one typically wishes to be as conservative as possible by not changing any of their elementary properties. This guarantees that as many familiar results as possible will still be available. Typically elementary means that there is no quantification over sets, but only over elements. This limitation allows statements of the form "for any number x..." For example, the axiom that states "for any number x, x + 0 = x" would still apply. The same is true for quantification over several numbers, e.g., "for any numbers x and y, xy = yx." However, statements of the form "for any set S of numbers ..." may not carry over. This limitation on quantification is referred to as first-order logic.
It superficially seems clear that the resulting extended number system cannot agree with the reals on all properties that can be expressed by quantification over sets, because the goal is to construct a nonarchimedean system, and the Archimedean principle can be expressed by quantification over sets, but this is just plain wrong. It is trivial to conservatively extend any theory including reals, including set theory, to include infinitesimals, just by adding a countably infinite list of axioms that assert that a number is smaller than 1/2, 1/3, 1/4 and so on. Similarly, the completeness property cannot be expected to carry over, because the reals are the unique complete ordered field up to isomorphism. This is also wrong, at least as a formal statement, since it presuming some underlying model of set theory.
We can distinguish three levels at which a nonarchimedean number system could have first-order properties compatible with those of the reals:
- An ordered field obeys all the usual axioms of the real number system that can be stated in first-order logic. For example, the commutativity axiom x + y = y + x holds.
- A real closed field has all the first-order properties of the real number system, regardless of whether they are usually taken as axiomatic, for statements involving the basic ordered-field relations +, *, and ≤. This is a stronger condition than obeying the ordered-field axioms. More specifically, one includes additional first-order properties, such as the existence of a root for every odd-degree polynomial. For example, every number must have a cube root.
- The system could have all the first-order properties of the real number system for statements involving any relations (regardless of whether those relations can be expressed using +, *, and ≤). For example, there would have to be a sine function that is well defined for infinite inputs; the same is true for every real function.
Systems in category 1, at the weak end of the spectrum, are relatively easy to construct, but do not allow a full treatment of classical analysis using infinitesimals in the spirit of Newton and Leibniz. For example, the transcendental functions are defined in terms of infinite limiting processes, and therefore there is typically no way to define them in first-order logic. Increasing the analytic strength of the system by passing to categories 2 and 3, we find that the flavor of the treatment tends to become less constructive, and it becomes more difficult to say anything concrete about the hierarchical structure of infinities and infinitesimals.
Read more about this topic: Infinitesimal
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)