Invariant Subspace - Left Ideals

Left Ideals

If A is an algebra, one can define a left regular representation Φ on A: Φ(a)b = ab is a homomorphism from A to L(A), the algebra of linear transformations on A

The invariant subspaces of Φ are precisely the left ideals of A. A left ideal M of A gives a subrepresentation of A on M.

If M is a left ideal of A. Consider the quotient vector space A/M. The left regular representation Φ on M now descends to a representation Φ' on A/M. If denotes an equivalence class in A/M, Φ'(a) = . The kernel of the representation Φ' is the set {aA| abM for all b}.

The representation Φ' is irreducible if and only if M is a maximal left ideal, since a subspace VA/M is an invariant under {Φ'(a)| aA} if and only if its preimage under the quotient map, V + M, is a left ideal in A.

Read more about this topic:  Invariant Subspace

Famous quotes containing the words left and/or ideals:

    Where has it gone, the lifetime?
    Search me. What’s left is drear.
    Unchilded and unwifed, I’m
    Able to view that clear:
    So final. And so near.
    Philip Larkin (1922–1986)

    My own ideals for the university are those of a genuine democracy and serious scholarship. These two, indeed, seem to go together.
    Woodrow Wilson (1856–1924)