Inverse Transform Sampling - Proof of Correctness

Proof of Correctness

Let F be a continuous cumulative distribution function, and let F−1 be its inverse function (using the infimum because CDFs are weakly monotonic and right-continuous):

Claim: If U is a uniform random variable on (0, 1) then follows the distribution F.

Proof:


\begin{align}
& \Pr(F^{-1}(U) \leq x) \\
& {} = \Pr(\inf\;\{y \mid F(y)=U\} \leq x)\quad &\text{(by definition of }F^{-1}) \\
& {} = \Pr(U \leq F(x)) \quad &\text{(applying }F,\text{ which is monotonic, to both sides)} \\
& {} = F(x)\quad &\text{(because }\Pr(U \leq y) = y,\text{ since }U\text{ is uniform on the unit interval)}.
\end{align}

Read more about this topic:  Inverse Transform Sampling

Famous quotes containing the words proof of, proof and/or correctness:

    In the reproof of chance
    Lies the true proof of men.
    William Shakespeare (1564–1616)

    If any proof were needed of the progress of the cause for which I have worked, it is here tonight. The presence on the stage of these college women, and in the audience of all those college girls who will some day be the nation’s greatest strength, will tell their own story to the world.
    Susan B. Anthony (1820–1906)

    The surest guide to the correctness of the path that women take is joy in the struggle. Revolution is the festival of the oppressed.
    Germaine Greer (b. 1939)