Lambda Calculus - Semantics

Semantics

The fact that lambda calculus terms act as functions on other lambda calculus terms, and even on themselves, led to questions about the semantics of the lambda calculus. Could a sensible meaning be assigned to lambda calculus terms? The natural semantics was to find a set D isomorphic to the function space DD, of functions on itself. However, no nontrivial such D can exist, by cardinality constraints because the set of all functions from D into D has greater cardinality than D.

In the 1970s, Dana Scott showed that, if only continuous functions were considered, a set or domain D with the required property could be found, thus providing a model for the lambda calculus.

This work also formed the basis for the denotational semantics of programming languages.

Read more about this topic:  Lambda Calculus