Laplace Transform - Formal Definition

Formal Definition

The Laplace transform of a function f(t), defined for all real numbers t ≥ 0, is the function F(s), defined by:

The parameter s is a complex number:

with real numbers σ and ω.

The meaning of the integral depends on types of functions of interest. A necessary condition for existence of the integral is that f must be locally integrable on [0,∞). For locally integrable functions that decay at infinity or are of exponential type, the integral can be understood as a (proper) Lebesgue integral. However, for many applications it is necessary to regard it as a conditionally convergent improper integral at ∞. Still more generally, the integral can be understood in a weak sense, and this is dealt with below.

One can define the Laplace transform of a finite Borel measure μ by the Lebesgue integral

An important special case is where μ is a probability measure or, even more specifically, the Dirac delta function. In operational calculus, the Laplace transform of a measure is often treated as though the measure came from a distribution function f. In that case, to avoid potential confusion, one often writes

where the lower limit of 0− is shorthand notation for

This limit emphasizes that any point mass located at 0 is entirely captured by the Laplace transform. Although with the Lebesgue integral, it is not necessary to take such a limit, it does appear more naturally in connection with the Laplace–Stieltjes transform.

Read more about this topic:  Laplace Transform

Famous quotes containing the words formal and/or definition:

    The manifestation of poetry in external life is formal perfection. True sentiment grows within, and art must represent internal phenomena externally.
    Franz Grillparzer (1791–1872)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)