Analogous Laws
Some systems of logic have different but analogous laws. For some finite n-valued logics, there is an analogous law called the law of excluded n+1th. If negation is cyclic and "∨" is a "max operator", then the law can be expressed in the object language by (P ∨ ~P ∨ ~~P ∨ ... ∨ ~...~P), where "~...~" represents n−1 negation signs and "∨ ... ∨" n−1 disjunction signs. It is easy to check that the sentence must receive at least one of the n truth values (and not a value that is not one of the n).
Other systems reject the law entirely.
Read more about this topic: Law Of Excluded Middle
Famous quotes containing the words analogous and/or laws:
“The triumphs of peace have been in some proximity to war. Whilst the hand was still familiar with the sword-hilt, whilst the habits of the camp were still visible in the port and complexion of the gentleman, his intellectual power culminated; the compression and tension of these stern conditions is a training for the finest and softest arts, and can rarely be compensated in tranquil times, except by some analogous vigor drawn from occupations as hardy as war.”
—Ralph Waldo Emerson (18031882)
“Nothing comes to pass in nature, which can be set down to a flaw therein; for nature is always the same and everywhere one and the same in her efficiency and power of action; that is, natures laws and ordinances whereby all things come to pass and change from one form to another, are everywhere and always; so that there should be one and the same method of understanding the nature of all things whatsoever, namely, through natures universal laws and rules.”
—Baruch (Benedict)