Units and Measures
Light is measured with two main alternative sets of units: radiometry consists of measurements of light power at all wavelengths, while photometry measures light with wavelength weighted with respect to a standardised model of human brightness perception. Photometry is useful, for example, to quantify Illumination (lighting) intended for human use. The SI units for both systems are summarised in the following tables.
Table 1. SI radiometry units- v
- t
- e
Quantity | Symbol | SI unit | Symbol | Dimension | Notes | |||
---|---|---|---|---|---|---|---|---|
Radiant energy | Qe | joule | J | M⋅L2⋅T−2 | energy | |||
Radiant flux | Φe | watt | W | M⋅L2⋅T−3 | radiant energy per unit time, also called radiant power. | |||
Spectral power | Φeλ | watt per metre | W⋅m−1 | M⋅L⋅T−3 | radiant power per wavelength. | |||
Radiant intensity | Ie | watt per steradian | W⋅sr−1 | M⋅L2⋅T−3 | power per unit solid angle. | |||
Spectral intensity | Ieλ | watt per steradian per metre | W⋅sr−1⋅m−1 | M⋅L⋅T−3 | radiant intensity per wavelength. | |||
Radiance | Le | watt per steradian per square metre | W⋅sr−1⋅m−2 | M⋅T−3 | power per unit solid angle per unit projected source area. confusingly called "intensity" in some other fields of study. |
|||
Spectral radiance | Leλ or Leν |
watt per steradian per metre3 or watt per steradian per square |
W⋅sr−1⋅m−3 or W⋅sr−1⋅m−2⋅Hz−1 |
M⋅L−1⋅T−3 or M⋅T−2 |
commonly measured in W⋅sr−1⋅m−2⋅nm−1 with surface area and either wavelength or frequency. |
|||
Irradiance | Ee | watt per square metre | W⋅m−2 | M⋅T−3 | power incident on a surface, also called radiant flux density. sometimes confusingly called "intensity" as well. |
|||
Spectral irradiance | Eeλ or Eeν |
watt per metre3 or watt per square metre per hertz |
W⋅m−3 or W⋅m−2⋅Hz−1 |
M⋅L−1⋅T−3 or M⋅T−2 |
commonly measured in W⋅m−2⋅nm−1 or 10−22W⋅m−2⋅Hz−1, known as solar flux unit. |
|||
Radiant exitance / Radiant emittance |
Me | watt per square metre | W⋅m−2 | M⋅T−3 | power emitted from a surface. | |||
Spectral radiant exitance / Spectral radiant emittance |
Meλ or Meν |
watt per metre3 or watt per square |
W⋅m−3 or W⋅m−2⋅Hz−1 |
M⋅L−1⋅T−3 or M⋅T−2 |
power emitted from a surface per wavelength or frequency. |
|||
Radiosity | Je or Jeλ | watt per square metre | W⋅m−2 | M⋅T−3 | emitted plus reflected power leaving a surface. | |||
Radiant exposure | He | joule per square metre | J⋅m−2 | M⋅T−2 | ||||
Radiant energy density | ωe | joule per metre3 | J⋅m−3 | M⋅L−1⋅T−2 | ||||
See also: SI · Radiometry · Photometry · (Compare) |
- v
- t
- e
Quantity | Symbol | SI unit | Symbol | Dimension | Notes | |||
---|---|---|---|---|---|---|---|---|
Luminous energy | Qv | lumen second | lm⋅s | T⋅J | units are sometimes called talbots | |||
Luminous flux | Φv | lumen (= cd⋅sr) | lm | J | also called luminous power | |||
Luminous intensity | Iv | candela (= lm/sr) | cd | J | an SI base unit, luminous flux per unit solid angle | |||
Luminance | Lv | candela per square metre | cd/m2 | L−2⋅J | units are sometimes called nits | |||
Illuminance | Ev | lux (= lm/m2) | lx | L−2⋅J | used for light incident on a surface | |||
Luminous emittance | Mv | lux (= lm/m2) | lx | L−2⋅J | used for light emitted from a surface | |||
Luminous exposure | Hv | lux second | lx⋅s | L−2⋅T⋅J | ||||
Luminous energy density | ωv | lumen second per metre3 | lm⋅s⋅m−3 | L−3⋅T⋅J | ||||
Luminous efficacy | η | lumen per watt | lm/W | M−1⋅L−2⋅T3⋅J | ratio of luminous flux to radiant flux | |||
Luminous efficiency | V | 1 | also called luminous coefficient | |||||
See also: SI · Photometry · Radiometry · (Compare) |
The photometry units are different from most systems of physical units in that they take into account how the human eye responds to light. The cone cells in the human eye are of three types which respond differently across the visible spectrum, and the cumulative response peaks at a wavelength of around 555 nm. Therefore, two sources of light which produce the same intensity (W/m2) of visible light do not necessarily appear equally bright. The photometry units are designed to take this into account, and therefore are a better representation of how "bright" a light appears to be than raw intensity. They relate to raw power by a quantity called luminous efficacy, and are used for purposes like determining how to best achieve sufficient illumination for various tasks in indoor and outdoor settings. The illumination measured by a photocell sensor does not necessarily correspond to what is perceived by the human eye, and without filters which may be costly, photocells and charge-coupled devices (CCD) tend to respond to some infrared, ultraviolet or both.
Read more about this topic: Light
Famous quotes containing the words units and/or measures:
“Even in harmonious families there is this double life: the group life, which is the one we can observe in our neighbours household, and, underneath, anothersecret and passionate and intensewhich is the real life that stamps the faces and gives character to the voices of our friends. Always in his mind each member of these social units is escaping, running away, trying to break the net which circumstances and his own affections have woven about him.”
—Willa Cather (18731947)
“The reliance on authority measures the decline of religion, the withdrawal of the soul.”
—Ralph Waldo Emerson (18031882)