Interpolation of A Data Set
Linear interpolation on a set of data points (x0, y0), (x1, y1), ..., (xn, yn) is defined as the concatenation of linear interpolants between each pair of data points. This results in a continuous curve, with a discontinuous derivative (in general), thus of differentiability class .
Read more about this topic: Linear Interpolation
Famous quotes containing the words data and/or set:
“This city is neither a jungle nor the moon.... In long shot: a cosmic smudge, a conglomerate of bleeding energies. Close up, it is a fairly legible printed circuit, a transistorized labyrinth of beastly tracks, a data bank for asthmatic voice-prints.”
—Susan Sontag (b. 1933)
“O these encounterers, so glib of tongue,
That give a coasting welcome ere it comes,
And wide unclasp the tables of their thoughts
To every ticklish reader! Set them down
For sluttish spoils of opportunity
And daughters of the game.”
—William Shakespeare (15641616)