Magnetic Substorms and Storms
Earlier it was stated that, "if plasma is pushed hard enough, it generates electric fields which allow it to move in response to the push, often (not always) deforming the magnetic field in the process." Two examples of such "pushing" are particularly important in the magnetosphere. The THEMIS mission is a NASA program to study in detail the physical processes involved in substorms.
The more common one occurs when the north-south component Bz of the interplanetary magnetic field (IMF) is appreciable and points southward. In this state field lines of the magnetosphere are relatively strongly linked to the IMF, allowing energy and plasma to enter it at relatively high rates. This swells up the magnetotail and makes it unstable. Ultimately the tail's structure changes abruptly and violently, a process known as a magnetic substorm.
One possible scenario (the subject is still debated) is as follows. As the magnetotail swells, it creates a wider obstacle to the solar wind flow, causing its widening portion to be squeezed more by the solar wind. In the end, this squeezing breaks apart field lines in the plasma sheet ("magnetic reconnection"), and the distant part of the sheet, no longer attached to the Earth, is swept away as an independent magnetic structure ("plasmoid"). The near-Earth part snaps back earthwards, energizing its particles and producing Birkeland currents and bright auroras. As observed in the 1970s by the ATS satellites at 6.6 RE, when conditions are favorable that can happen up to several times a day.
Substorms generally do not substantially add to the ring current. That happens in magnetic storms, when following an eruption on the sun (a "coronal mass ejection" or a "solar flare"—details are still debated, see MSPF) a fast-moving plasma cloud hits the Earth. If the IMF has a southward component, this not only pushes the magnetopause boundary closer to Earth (at times to about half its usual distance), but it also produces an injection of plasma from the tail, much more vigorous than the one associated with substorms.
The plasma population of the ring current may now grow substantially, and a notable part of the addition consists of O+ oxygen ions extracted from the ionosphere as a by-product of the polar aurora. In addition, the ring current is driven earthward (which energizes its particles further), temporarily modifying the field around the Earth and thus shifting the aurora (and its current system) closer to the equator. The magnetic disturbance may decay within 1–3 days as many ions are removed by charge exchange, but the higher energies of the ring current can persist much longer.
Read more about this topic: Magnetosphere
Famous quotes containing the words magnetic and/or storms:
“We are in great haste to construct a magnetic telegraph from Maine to Texas; but Maine and Texas, it may be, have nothing important to communicate.”
—Henry David Thoreau (18171862)
“I hold it that a little rebellion, now and then, is a good thing, and as necessary in the political world as storms in the physical.... It is a medicine necessary for the sound health of government.”
—Thomas Jefferson (17431826)