Maps of Manifolds
Main article: Maps of manifoldsJust as there are various types of manifolds, there are various types of maps of manifolds. In addition to continuous functions and smooth functions generally, there are maps with special properties. In geometric topology a basic type are embeddings, of which knot theory is a central example, and generalizations such as immersions, submersions, covering spaces, and ramified covering spaces. Basic results include the Whitney embedding theorem and Whitney immersion theorem.
In Riemannian geometry, one may ask for maps to preserve the Riemannian metric, leading to notions of isometric embeddings, isometric immersions, and Riemannian submersions; a basic result is the Nash embedding theorem.
Read more about this topic: Manifold
Famous quotes containing the words maps of and/or maps:
“The faces of most American women over thirty are relief maps of petulant and bewildered unhappiness.”
—F. Scott Fitzgerald (18961940)
“And at least you know
That maps are of time, not place, so far as the army
Happens to be concernedthe reason being,
Is one which need not delay us.”
—Henry Reed (19141986)