Mathematical Model - Classifying Mathematical Models

Classifying Mathematical Models

Many mathematical models can be classified in some of the following ways:

  1. Linear vs. nonlinear: Mathematical models are usually composed by variables, which are abstractions of quantities of interest in the described systems, and operators that act on these variables, which can be algebraic operators, functions, differential operators, etc. If all the operators in a mathematical model exhibit linearity, the resulting mathematical model is defined as linear. A model is considered to be nonlinear otherwise.
    The question of linearity and nonlinearity is dependent on context, and linear models may have nonlinear expressions in them. For example, in a statistical linear model, it is assumed that a relationship is linear in the parameters, but it may be nonlinear in the predictor variables. Similarly, a differential equation is said to be linear if it can be written with linear differential operators, but it can still have nonlinear expressions in it. In a mathematical programming model, if the objective functions and constraints are represented entirely by linear equations, then the model is regarded as a linear model. If one or more of the objective functions or constraints are represented with a nonlinear equation, then the model is known as a nonlinear model.
    Nonlinearity, even in fairly simple systems, is often associated with phenomena such as chaos and irreversibility. Although there are exceptions, nonlinear systems and models tend to be more difficult to study than linear ones. A common approach to nonlinear problems is linearization, but this can be problematic if one is trying to study aspects such as irreversibility, which are strongly tied to nonlinearity.
  2. Deterministic vs. probabilistic (stochastic): A deterministic model is one in which every set of variable states is uniquely determined by parameters in the model and by sets of previous states of these variables. Therefore, deterministic models perform the same way for a given set of initial conditions. Conversely, in a stochastic model, randomness is present, and variable states are not described by unique values, but rather by probability distributions.
  3. Static vs. dynamic: A static model does not account for the element of time, while a dynamic model does. Dynamic models typically are represented with difference equations or differential equations.
  4. Discrete vs. Continuous: A discrete model does not take into account the function of time and usually uses time-advance methods, while a Continuous model does. Continuous models typically are represented with f(t) and the changes are reflected over continuous time intervals.
  5. Deductive, inductive, or floating: A deductive model is a logical structure based on a theory. An inductive model arises from empirical findings and generalization from them. The floating model rests on neither theory nor observation, but is merely the invocation of expected structure. Application of mathematics in social sciences outside of economics has been criticized for unfounded models. Application of catastrophe theory in science has been characterized as a floating model.

Read more about this topic:  Mathematical Model

Famous quotes containing the words mathematical and/or models:

    The circumstances of human society are too complicated to be submitted to the rigour of mathematical calculation.
    Marquis De Custine (1790–1857)

    Today it is not the classroom nor the classics which are the repositories of models of eloquence, but the ad agencies.
    Marshall McLuhan (1911–1980)