Mathematical Model - Examples of Mathematical Models

Examples of Mathematical Models

  • Many everyday activities carried out without a thought are uses of mathematical models. A geographical map projection of a region of the earth onto a small, plane surface is a model which can be used for many purposes such as planning travel.
  • Another simple activity is predicting the position of a vehicle from its initial position, direction and speed of travel, using the equation that distance travelled is the product of time and speed. This is known as dead reckoning when used more formally. Mathematical modelling in this way does not necessarily require formal mathematics; animals have been shown to use dead reckoning.
  • Population Growth. A simple (though approximate) model of population growth is the Malthusian growth model. A slightly more realistic and largely used population growth model is the logistic function, and its extensions.
  • Model of a particle in a potential-field. In this model we consider a particle as being a point of mass which describes a trajectory in space which is modeled by a function giving its coordinates in space as a function of time. The potential field is given by a function V : R3 → R and the trajectory is a solution of the differential equation
Note this model assumes the particle is a point mass, which is certainly known to be false in many cases in which we use this model; for example, as a model of planetary motion.
  • Model of rational behavior for a consumer. In this model we assume a consumer faces a choice of n commodities labeled 1,2,...,n each with a market price p1, p2,..., pn. The consumer is assumed to have a cardinal utility function U (cardinal in the sense that it assigns numerical values to utilities), depending on the amounts of commodities x1, x2,..., xn consumed. The model further assumes that the consumer has a budget M which is used to purchase a vector x1, x2,..., xn in such a way as to maximize U(x1, x2,..., xn). The problem of rational behavior in this model then becomes an optimization problem, that is:
subject to:
This model has been used in general equilibrium theory, particularly to show existence and Pareto efficiency of economic equilibria. However, the fact that this particular formulation assigns numerical values to levels of satisfaction is the source of criticism (and even ridicule). However, it is not an essential ingredient of the theory and again this is an idealization.
  • Neighbour-sensing model explains the mushroom formation from the initially chaotic fungal network.
  • Computer Science: models in Computer Networks, data models, surface model,...
  • Mechanics: movement of rocket model,...

Modeling requires selecting and identifying relevant aspects of a situation in the real world.

Read more about this topic:  Mathematical Model

Famous quotes containing the words examples of, examples, mathematical and/or models:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    An accurate charting of the American woman’s progress through history might look more like a corkscrew tilted slightly to one side, its loops inching closer to the line of freedom with the passage of time—but like a mathematical curve approaching infinity, never touching its goal. . . . Each time, the spiral turns her back just short of the finish line.
    Susan Faludi (20th century)

    Friends broaden our horizons. They serve as new models with whom we can identify. They allow us to be ourselves—and accept us that way. They enhance our self-esteem because they think we’re okay, because we matter to them. And because they matter to us—for various reasons, at various levels of intensity—they enrich the quality of our emotional life.
    Judith Viorst (20th century)