The Inner and Outer Products
Given two column vectors a and b, the Euclidean inner product and outer product are the simplest special cases of the matrix product, by transposing the column vectors into row vectors.
- The inner product
is a column vector multiplied on the left by a row vector:
More explicitly,
- The outer product
is a row vector multiplied on the left by a column vector:
where
- Matrix product (in terms of inner product)
Suppose that the first n×m matrix A is decomposed into its row vectors ai, and the second m×p matrix B into its column vectors bi:
where
The entries in the introduction were given by:
It is also possible to express a matrix product in terms of concatenations of products of matrices and row or column vectors:
These decompositions are particularly useful for matrices that are envisioned as concatenations of particular types of row vectors or column vectors, e.g. orthogonal matrices (whose rows and columns are unit vectors orthogonal to each other) and Markov matrices (whose rows or columns sum to 1).
- Matrix product (in terms of outer product)
An alternative method results when the decomposition is done the other way around, i.e. the first matrix A is decomposed into column vectors and the second matrix B into row vectors :
where this time
This method emphasizes the effect of individual column/row pairs on the result, which is a useful point of view with e.g. covariance matrices, where each such pair corresponds to the effect of a single sample point.
Read more about this topic: Matrix Multiplication
Famous quotes containing the words outer and/or products:
“Gillian Taylor: Youre from outer space?
James T. Kirk: No, Im from Iowa; I work in outer space.”
—Harve Bennett (b. 1930)
“... white people, like black ones, are victims of a racist society. They are products of their time and place.”
—Shirley Chisholm (b. 1924)