Maximal Ideal - Definition

Definition

There are other equivalent ways of expressing the definition of maximal one-sided and maximal two-sided ideals. Given a ring R and a proper ideal I of R (that is IR), I is a maximal ideal of R if any of the following equivalent conditions hold:

  • There exists no other proper ideal J of R so that IJ.
  • For any ideal J with IJ, either J = I or J = R.
  • The quotient ring R/I is a simple ring.

There is an analogous list for one-sided ideals, for which only the right-hand versions will be given. For a right ideal A of a ring R, the following conditions are equivalent to A being a maximal right ideal of R:

  • There exists no other proper right ideal B of R so that AB.
  • For any right ideal B with AB, either B = A or B = R.
  • The quotient module R/A is a simple right R module.

Maximal right/left/two-sided ideals are the dual notion to that of minimal ideals.

Read more about this topic:  Maximal Ideal

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)