Applications
Some metals and metal alloys possess high structural strength per unit mass, making them useful materials for carrying large loads or resisting impact damage. Metal alloys can be engineered to have high resistance to shear, torque and deformation. However the same metal can also be vulnerable to fatigue damage through repeated use or from sudden stress failure when a load capacity is exceeded. The strength and resilience of metals has led to their frequent use in high-rise building and bridge construction, as well as most vehicles, many appliances, tools, pipes, non-illuminated signs and railroad tracks.
The two most commonly used structural metals, iron and aluminium, are also the most abundant metals in the Earth's crust.
Metals are good conductors, making them valuable in electrical appliances and for carrying an electric current over a distance with little energy lost. Electrical power grids rely on metal cables to distribute electricity. Home electrical systems, for the most part, are wired with copper wire for its good conducting properties.
The thermal conductivity of metal is useful for containers to heat materials over a flame. Metal is also used for heat sinks to protect sensitive equipment from overheating.
The high reflectivity of some metals is important in the construction of mirrors, including precision astronomical instruments. This last property can also make metallic jewelry aesthetically appealing.
Some metals have specialized uses; radioactive metals such as uranium and plutonium are used in nuclear power plants to produce energy via nuclear fission. Mercury is a liquid at room temperature and is used in switches to complete a circuit when it flows over the switch contacts. Shape memory alloy is used for applications such as pipes, fasteners and vascular stents.
Read more about this topic: Metal