Metallothionein - Structure and Classification

Structure and Classification

MTs are present in a vast range of taxonomic groups, ranging from prokaryotes (such as the cyanobacteria Syneccococus spp....), protozoa (p. ex. the ciliate Tetrahymena genera...), plants (such as Pisum sativum, Triticum durum, Zea mays, Quercus suber...), yeast (such as Saccharomyces cerevisiae, Candida albicans,...), invertebrates (such as the nematode Caenorhabditis elegans, the insect Drosophila melanogaster, the mollusc Mytilus edulis, or the echinoderm Strongylocentrotus purpuratus) and vertebrates (such as the chicken, Gallus gallus, or the mammalian Homo sapiens or Mus musculus).
The MTs from this diverse taxonomic range represent a high-heterogeneity sequence (regarding molecular weight and number and distribution of Cys residues) and do not show general homology; in spite of this, homology is found inside some taxonomic groups (such as vertebrate MTs).

From their primary structure, MTs have been classified by different methods. The first one dates from 1987, when Fowler et al., established three classes of MTs: Class I, including the MTs which show homology with horse MT, Class II, including the rest of the MTs with no homology with horse MT, and Class III, which includes phytochelatins, Cys-rich enzymatically synthesised peptides. The second classification was performed by Binz and Kagi in 2001, and takes into account taxonomic parameters and the patterns of distribution of Cys residues along the MT sequence. It results in a classification of 15 families for proteinaceous MTs. Family 15 contains the plant MTs, which in 2002 have been further classified by Cobbet and Goldsbrough into 4 Types (1, 2, 3 and 4) depending on the distribution of their Cys residues and a Cys-devoid regions (called spacers) characteristic of plant MTs.
A table including the principal aspects of the two latter classifications is included.

Family Name Sequence pattern Example
1 Vertebrate K-x(1,2)-C-C-x-C-C-P-x(2)-C M.musculus MT1
MDPNCSCTTGGSCACAGSCKCKECKCTSCKKCCSCCPVGCAKCAQGCVCKGSSEKCRCCA
2 Molluscan C-x-C-x(3)-C-T-G-x(3)-C-x-C-x(3)-C-x-C-K M.edulis 10MTIV
MPAPCNCIETNVCICDTGCSGEGCRCGDACKCSGADCKCSGCKVVCKCSGSCACEGGCTGPSTCKCAPGCSCK
3 Crustacean P-[GD)-P-C-C-x(3,4)-C-x-C H.americanus MTH
MPGPCCKDKCECAEGGCKTGCKCTSCRCAPCEKCTSGCKCPSKDECAKTCSKPCKCCP
4 Echinoderms P-D-x-K-C-[V,F)-C-C-x(5)-C-x-C-x(4)-

C-C-x(4)-C-C-x(4,6)-C-C

S.purpuratus SpMTA
MPDVKCVCCKEGKECACFGQDCCKTGECCKDGTCCGICTNAACKCANGCKCGSGCSCTEGNCAC
5 Diptera C-G-x(2)-C-x-C-x(2)-Q-x(5)-C-x-C-x(2)D-C-x-C D.melanogaster MTNB
MVCKGCGTNCQCSAQKCGDNCACNKDCQCVCKNGPKDQCCSNK
6 Nematoda K-C-C-x(3)-C-C C.elegans MT1
MACKCDCKNKQCKCGDKCECSGDKCCEKYCCEEASEKKCCPAGCKGDCKCANCHCAEQKQCGDKTHQHQGTAAAH
7 Ciliate x-C-C-C-x ? T.termophila MTT1
MDKVNSCCCGVNAKPCCTDPNSGCCCVSKTDNCCKSDTKECCTGTGEGCKCVNCKCCKPQANCCCGVNAKPCCFDPNSGCCCVSKTNNCCKSD TKECCTGTGEGCKCTSCQCCKPVQQGCCCGDKAKACCTDPNSGCCCSNKANKCCDATSKQECQTCQCCK
8 Fungal 1 C-G-C-S-x(4)-C-x-C-x(3,4)-C-x-C-S-x-C N.crassa MT
MGDCGCSGASSCNCGSGCSCSNCGSK
9 Fungal 2 --- C.glabrata MT2
MANDCKCPNGCSCPNCANGGCQCGDKCECKKQSCHGCGEQCKCGSHGSSCHGSCGCGDKCECK
10 Fungal 3 --- C.glabrata MT2
MPEQVNCQYDCHCSNCACENTCNCCAKPACACTNSASNECSCQTCKCQTCKC
11 Fungal 4 C-X-K-C-x-C-x(2)-C-K-C Y.lipolitica MT3
MEFTTAMLGASLISTTSTQSKHNLVNNCCCSSSTSESSMPASCACTKCGCKTCKC
12 Fungal 5 --- S.cerevisiae CUP1
MFSELINFQNEGHECQCQCGSCKNNEQCQKSCSCPTGCNSDDKCPCGNKSEETKKSCCSGK
13 Fungal 6 --- S.cerevisiae CRS5
TVKICDCEGECCKDSCHCGSTCLPSCSGGEKCKCDHSTGSPQCKSCGEKCKCETTCTCEKSKCNCEKC
14 Procaryota K-C-A-C-x(2)-C-L-C Synechococcus sp SmtA
MTTVTQMKCACPHCLCIVSLNDAIMVDGKPYCSEVCANGTCKENSGCGHAGCGCGSA
15 Plant
15.1 Plant MTs Type 1 C-X-C-X(3)- C-X-C-X(3)- C-X-C-X(3)-spacer-C-X-C-X(3)- C-X-C-X(3)- C-X-C-X(3) Pisum sativum MT
MSGCGCGSSCNCGDSCKCNKRSSGLSYSEMETTETVILGVGPAKIQFEGAEMSAASEDGGCKCGDNCTCDPCNCK
15.2 Plant MTs Type 2 C-C-X(3)-C-X-C-X(3)- C-X-C-X(3)- C-X-C-X(3)-spacer- C-X-C-X(3)- C-X-C-X(3)- C-X-C-X(3) L.esculetum MT
MSCCGGNCGCGSSCKCGNGCGGCKMYPDMSYTESSTTTETLVLGVGPEKTSFGAMEMGESPVAENGCKCGSDCKCNPCTCSK
15.3 Plant MTs Type 3 --- A.thaliana MT3
MSSNCGSCDCADKTQCVKKGTSYTFDIVETQESYKEAMIMDVGAEENNANCKCKCGSSCSCVNCTCCPN
15.4 Plant MTs Type 4 or Ec C-x(4)-C-X-C-X(3)-C-X(5)-C-X-C-X(9,11)-HTTCGCGEHC-

X-C-X(20)-CSCGAXCNCASC-X(3,5)

T.aestium MT
MGCNDKCGCAVPCPGGTGCRCTSARSDAAAGEHTTCGCGEHCGCNPCACGREGTPSGRANRRANCSCGAACNCASCGSTTA
99 Phytochelatins and other non-proteinaceous MT-like polypeptides --- S.pombe
γEC-γEC-γECG

More data on this classification are discoverable at the Expasy metallothionein page

Secondary structure elements have been observed in several MTs SmtA from Syneccochoccus, mammalian MT3, Echinoderma SpMTA, fish Notothenia Coriiceps MT, Crustacean MTH, but until this moment, the content of such structures is considered to be poor in MTs, and its functional influence is not considered.

Tertiary structure of MTs is also highly heterogeneous. While vertebrate, echinoderm and crustacean MTs show a bidominial structure with divalent metals as Zn(II) or Cd(II) (the protein is folded so as to bind metals in two functionally independent domains, with a metallic cluster each), yeast and procariotyc MTs show a monodominial structure (one domain with a single metallic cluster). Although no structural data is available for molluscan, nematoda and Drosophila MTs, it is commonly assumed that the former are bidominial and the latter monodominial. No conclusive data are available for Plant MTs, but two possible structures have been proposed: 1) a bidominial structure similar to that of vertebrate MTs; 2) a codominial structure, in which two Cys-rich domains interact to form a single metallic cluster.

Quaternary structure has not been broadly considered for MTs. Dimerization and oligomerization processes have been observed and attributed to several molecular mechanisms, including intermolecular disulfide formation, bridging through metals bound by either Cys or His residues on different MTs, or inorganic phosphate-mediated interactions. Dimeric and polymeric MTs have been shown to acquire novel properties upon metal detoxification, but the physiological significance of these processes has been demonstrated only in the case of prokaryotic Synechococcus SmtA. The MT dimer produced by this organism forms structures similar to zinc fingers and has Zn-regulatory activity.

Metallothioneins have diverse metal-binding preferences, which have been associated with functional specificity. As an example, the mammalian Mus musculus MT1 preferentially binds divalent metal ions (Zn(II), Cd(II),...), while yeast CUP1 is selective for monovalent metal ions (Cu(I), Ag(I),...). A novel functional classification of MTs as Zn- or Cu-thioneins is currently being developed based on these functional preferences.

Read more about this topic:  Metallothionein

Famous quotes containing the words structure and and/or structure:

    Slumism is the pent-up anger of people living on the outside of affluence. Slumism is decay of structure and deterioration of the human spirit. Slumism is a virus which spreads through the body politic. As other “isms,” it breeds disorder and demagoguery and hate.
    Hubert H. Humphrey (1911–1978)

    If rightly made, a boat would be a sort of amphibious animal, a creature of two elements, related by one half its structure to some swift and shapely fish, and by the other to some strong-winged and graceful bird.
    Henry David Thoreau (1817–1862)