Topological Properties
Metric spaces are paracompact Hausdorff spaces and hence normal (indeed they are perfectly normal). An important consequence is that every metric space admits partitions of unity and that every continuous real-valued function defined on a closed subset of a metric space can be extended to a continuous map on the whole space (Tietze extension theorem). It is also true that every real-valued Lipschitz-continuous map defined on a subset of a metric space can be extended to a Lipschitz-continuous map on the whole space.
Metric spaces are first countable since one can use balls with rational radius as a neighborhood base.
The metric topology on a metric space M is the coarsest topology on M relative to which the metric d is a continuous map from the product of M with itself to the non-negative real numbers.
Read more about this topic: Metric Space
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (1803–1882)