Minkowski Space - Causal Structure

Causal Structure

Vectors are classified according to the sign of η(v,v). When the standard signature (−,+,+,+) is used, a vector v is:

Timelike if η(v,v) < 0
Spacelike if η(v,v) > 0
Null (or lightlike) if η(v,v) = 0

This terminology comes from the use of Minkowski space in the theory of relativity. The set of all null vectors at an event of Minkowski space constitutes the light cone of that event. Note that all these notions are independent of the frame of reference. Given a timelike vector v, there is a worldline of constant velocity associated with it. The set {w : η(w,v) = 0 } corresponds to the simultaneous hyperplane at the origin of this worldline. Minkowski space exhibits relativity of simultaneity since this hyperplane depends on v. In the plane spanned by v and such a w in the hyperplane, the relation of w to v is hyperbolic-orthogonal.

Once a direction of time is chosen, timelike and null vectors can be further decomposed into various classes. For timelike vectors we have

  1. future directed timelike vectors whose first component is positive, and
  2. past directed timelike vectors whose first component is negative.

Null vectors fall into three classes:

  1. the zero vector, whose components in any basis are (0,0,0,0),
  2. future directed null vectors whose first component is positive, and
  3. past directed null vectors whose first component is negative.

Together with spacelike vectors there are 6 classes in all.

An orthonormal basis for Minkowski space necessarily consists of one timelike and three spacelike unit vectors. If one wishes to work with non-orthonormal bases it is possible to have other combinations of vectors. For example, one can easily construct a (non-orthonormal) basis consisting entirely of null vectors, called a null basis. Over the reals, if two null vectors are orthogonal (zero inner product), then they must be proportional. However, allowing complex numbers, one can obtain a null tetrad which is a basis consisting of null vectors, some of which are orthogonal to each other.

Vector fields are called timelike, spacelike or null if the associated vectors are timelike, spacelike or null at each point where the field is defined.

Read more about this topic:  Minkowski Space

Famous quotes containing the words causal and/or structure:

    There is the illusion of time, which is very deep; who has disposed of it? Mor come to the conviction that what seems the succession of thought is only the distribution of wholes into causal series.
    Ralph Waldo Emerson (1803–1882)

    For the structure that we raise,
    Time is with materials filled;
    Our to-days and yesterdays
    Are the blocks with which we build.
    Henry Wadsworth Longfellow (1809–1882)