Biology
There are thousands of known species of molds which have diverse life-styles including saprotrophs, mesophiles, psychrophiles and thermophiles and a very few opportunistic pathogens. They all require moisture for growth and there are some aquatic species. Like all fungi, molds derive energy not through photosynthesis but from the organic matter on which they live, utilising heterotrophy. Typically, molds secrete hydrolytic enzymes, from the hyphal tips. These enzymes degrade complex biopolymers such as starch, cellulose and lignin into simpler substances which can be absorbed by the hyphae. In this way molds play a major role in causing decomposition of organic material, enabling the recycling of nutrients throughout ecosystems. Many molds also synthesise mycotoxins and siderophores which, together with lytic enzymes, inhibit the growth of competing microorganisms.
Molds reproduce through producing very large numbers of small spores, which may contain a single nucleus or be multinucleate. Mold spores can be asexual (the products of mitosis) or sexual (the products of meiosis); many species can produce both types. Mold spores may remain airborne indefinitely, may cling to clothing or fur or may be able to survive extremes of temperature and pressure.
Although molds grow on dead organic matter everywhere in nature, their presence is visible to the unaided eye only when mold colonies grow. A mold colony does not consist of discrete organisms but of an interconnected network of hyphae called a mycelium. All growth occurs at hyphal tips, with cytoplasm and organelles flowing forwards as the hyphae advance over or through new food sources. Nutrients are absorbed at the hyphal tip. In artificial environments such as buildings, humidity and temperature are often stable enough to foster the growth of mold colonies, commonly seen as a downy or furry coating growing on food or other surfaces.
Few molds can begin growing at 4 °C (39 °F), the temperature within a typical refrigerator, or less. When conditions do not enable growth to take place, molds may remain alive in a dormant state depending on the species, within a large range of temperatures before they die. The many different mold species vary enormously in their tolerance to temperature and humidity extremes. Certain molds can survive harsh conditions such as the snow-covered soils of Antarctica, refrigeration, highly acidic solvents, anti-bacterial soap and even petroleum products such as jet fuel.
Xerophilic molds use the humidity in the air as their only water source; other molds need more moisture.
Read more about this topic: Mold
Famous quotes containing the word biology:
“Nothing can be more incorrect than the assumption one sometimes meets with, that physics has one method, chemistry another, and biology a third.”
—Thomas Henry Huxley (182595)
“The control of nature is a phrase conceived in arrogance, born of the Neanderthal age of biology and the convenience of man.”
—Rachel Carson (19071964)