Generalized Coordinates
See also: Analytical mechanicsNewton's laws can be difficult to apply to many kinds of motion because the motion is limited by constraints. For example, a bead on an abacus is constrained to move along its wire and a pendulum bob is constrained to swing at a fixed distance from the pivot. Many such constraints can be incorporated by changing the normal Cartesian coordinates to a set of generalized coordinates that may be fewer in number. Refined mathematical methods have been developed for solving mechanics problems in generalized coordinates. They introduce a generalized momentum, also known as the canonical or conjugate momentum, that extends the concepts of both linear momentum and angular momentum. To distinguish it from generalized momentum, the product of mass and velocity is also referred to as mechanical, kinetic or kinematic momentum. The two main methods are described below.
Read more about this topic: Momentum
Famous quotes containing the word generalized:
“One is conscious of no brave and noble earnestness in it, of no generalized passion for intellectual and spiritual adventure, of no organized determination to think things out. What is there is a highly self-conscious and insipid correctness, a bloodless respectability submergence of matter in mannerin brief, what is there is the feeble, uninspiring quality of German painting and English music.”
—H.L. (Henry Lewis)