Monoid - Relation To Category Theory

Relation To Category Theory

Group-like structures
Totality* Associativity Identity Inverses Commutativity
Magma Yes No No No No
Semigroup Yes Yes No No No
Monoid Yes Yes Yes No No
Group Yes Yes Yes Yes No
Abelian Group Yes Yes Yes Yes Yes
Loop Yes No Yes Yes No
Quasigroup Yes No No Yes No
Groupoid No Yes Yes Yes No
Category No Yes Yes No No
Semicategory No Yes No No No

Monoids can be viewed as a special class of categories. Indeed, the axioms required of a monoid operation are exactly those required of morphism composition when restricted to the set of all morphisms whose source and target is a given object. That is,

A monoid is, essentially, the same thing as a category with a single object.

More precisely, given a monoid (M,*), one can construct a small category with only one object and whose morphisms are the elements of M. The composition of morphisms is given by the monoid operation *.

Likewise, monoid homomorphisms are just functors between single object categories. So this construction gives an equivalence between the category of (small) monoids Mon and a full subcategory of the category of (small) categories Cat. Similarly, the category of groups is equivalent to another full subcategory of Cat.

In this sense, category theory can be thought of as an extension of the concept of a monoid. Many definitions and theorems about monoids can be generalised to small categories with more than one object. For example, a quotient of a category with one object is just a quotient monoid.

Monoids, just like other algebraic structures, also form their own category, Mon, whose objects are monoids and whose morphisms are monoid homomorphisms.

There is also a notion of monoid object which is an abstract definition of what is a monoid in a category. A monoid object in Set is just a monoid.

Read more about this topic:  Monoid

Famous quotes containing the words relation to, relation, category and/or theory:

    There is the falsely mystical view of art that assumes a kind of supernatural inspiration, a possession by universal forces unrelated to questions of power and privilege or the artist’s relation to bread and blood. In this view, the channel of art can only become clogged and misdirected by the artist’s concern with merely temporary and local disturbances. The song is higher than the struggle.
    Adrienne Rich (b. 1929)

    Parents ought, through their own behavior and the values by which they live, to provide direction for their children. But they need to rid themselves of the idea that there are surefire methods which, when well applied, will produce certain predictable results. Whatever we do with and for our children ought to flow from our understanding of and our feelings for the particular situation and the relation we wish to exist between us and our child.
    Bruno Bettelheim (20th century)

    I see no reason for calling my work poetry except that there is no other category in which to put it.
    Marianne Moore (1887–1972)

    It makes no sense to say what the objects of a theory are,
    beyond saying how to interpret or reinterpret that theory in another.
    Willard Van Orman Quine (b. 1908)