The periodic zeta function is sometimes defined as
where Lis(z) is the polylogarithm. It obeys the duplication formula
As such, it is an eigenvector of the Bernoulli operator with eigenvalue 2−s. The multiplication theorem is
The periodic zeta function occurs in the reflection formula for the Hurwitz zeta function, which is why the relation that it obeys, and the Hurwitz zeta relation, differ by the interchange of s → −s.
The Bernoulli polynomials may be obtained as a limiting case of the periodic zeta function, taking s to be an integer, and thus the multiplication theorem there can be derived from the above. Similarly, substituting q = log z leads to the multiplication theorem for the polylogarithm.
Read more about this topic: Multiplication Theorem
Famous quotes containing the words periodic and/or function:
“It can be demonstrated that the childs contact with the real world is strengthened by his periodic excursions into fantasy. It becomes easier to tolerate the frustrations of the real world and to accede to the demands of reality if one can restore himself at intervals in a world where the deepest wishes can achieve imaginary gratification.”
—Selma H. Fraiberg (20th century)
“The uses of travel are occasional, and short; but the best fruit it finds, when it finds it, is conversation; and this is a main function of life.”
—Ralph Waldo Emerson (18031882)