Muon Decay
See also: Michel parametersMuons are unstable elementary particles and are heavier than electrons and neutrinos but lighter than all other matter particles. They decay via the weak interaction. Because lepton numbers must be conserved, one of the product neutrinos of muon decay must be a muon-type neutrino and the other an electron-type antineutrino (antimuon decay produces the corresponding antiparticles, as detailed below). Because charge must be conserved, one of the products of muon decay is always an electron of the same charge as the muon (a positron if it is a positive muon). Thus all muons decay to at least an electron, and two neutrinos. Sometimes, besides these necessary products, additional other particles that have a net charge and spin of zero (e.g., a pair of photons, or an electron-positron pair), are produced.
The dominant muon decay mode (sometimes called the Michel decay after Louis Michel) is the simplest possible: the muon decays to an electron, an electron-antineutrino, and a muon-neutrino. Antimuons, in mirror fashion, most often decay to the corresponding antiparticles: a positron, an electron-neutrino, and a muon-antineutrino. In formulaic terms, these two decays are:
- .
The mean lifetime of the (positive) muon is 2.197019±0.000021 µs. The equality of the muon and anti-muon lifetimes has been established to better than one part in 104.
The muon decay width is, from Fermi's golden rule:
where and is the Fermi coupling constant.
The decay distributions of the electron in muon decays have been parameterised using the so-called Michel parameters. The values of these four parameters are predicted unambiguously in the Standard Model of particle physics, thus muon decays represent a good test of the space-time structure of the weak interaction. No deviation from the Standard Model predictions has yet been found.
For the decay of the muon, the expected decay distribution for the Standard Model values of Michel parameters is
Integration of this expression over electron energy gives the angular distribution of the daughter electrons:
The electron energy distribution integrated over the polar angle is
Due to the muons decaying by the weak interaction, parity conservation is violated. Replacing the term in the expected decay values of the Michel Parameters with a term, where ω is the Larmor frequency from Larmor precession of the muon in a uniform magnetic field, given by:
where m is mass of the muon, e is charge, g is the muon g-factor and B is applied field.
A change in the electron distribution computed using the standard, unprecessional, Michel Parameters can be seen displaying a periodicity of π radians. This can be shown to physically correspond to a phase change of π, introduced in the electron distribution as the angular momentum is changed by the action of the charge conjugation operator, which is conserved by the weak interaction.
The observation of Parity violation in muon decay can be compared to the concept of violation of partity in weak interactions in general as an extension of The Wu Experiment, as well as the change of angular momentum introduced by a phase change of π corresponding to the charge-parity operator being invariant in this interaction. This fact is true for all lepton interactions in The Standard Model.
Certain neutrino-less decay modes are kinematically allowed but forbidden in the Standard Model. Examples forbidden by lepton flavour conservation are:
and
- .
Observation of such decay modes would constitute clear evidence for theories beyond the Standard Model. Upper limits for the branching fractions of such decay modes were measured in many experiments starting more than 50 years ago. The current upper limit for the branching fraction was measured 2011 in the MEG experiment and is 2.4 × 10−12.
Read more about this topic: Muon