Biochemistry
Myostatin is a member of the TGF beta superfamily of proteins.
Human myostatin consists of two identical subunits, each consisting of 109 (NCBI database claims human myostatin is 375 residues long) amino acid residues. Its total molecular weight is 25.0 kDa. The protein is made in an inactive form. For it to be activated, a protease cleaves the NH2-terminal, or "pro-domain" portion of the molecule, resulting in the now-active COOH-terminal dimer.
Myostatin binds to the activin type II receptor, resulting in a recruitment of a coreceptor called Alk-3 or Alk-4. This coreceptor then initiates a cell signaling cascade in the muscle, which includes the activation of transcription factors in the SMAD family - SMAD2 and SMAD3. These factors then induce myostatin-specific gene regulation. When applied to myoblasts, myostatin inhibits their differentiation into mature muscle fibers.
Recently, myostatin has also been shown to inhibit Akt, a kinase that is sufficient to cause muscle hypertrophy, in part through the activation of protein synthesis.
Therefore, myostatin acts in two ways, by inhibiting muscle differentiation and by inhibiting Akt-induced protein synthesis.
Read more about this topic: Myostatin