Net Force - Parallelogram Rule For The Addition of Forces

Parallelogram Rule For The Addition of Forces

A force is known as a bound vector which means it has a direction and magnitude and a point of application. A convenient way to define a force is by a line segment from a point A to a point B. If we denote the coordinates of these points as A=(Ax, Ay, Az) and B=(Bx, By, Bz), then the force vector applied at A is given by

The length of the vector B-A defines the magnitude of F, and is given by

The sum of two forces F1 and F2 applied at A can be computed from the sum of the segments that define them. Let F1=B-A and F2=D-A, then the sum of these two vectors is

which can be written as

where E is the midpoint of the segment BD that joins the points B and D.

Thus, the sum of the forces F1 and F2 is twice the segment joining A to the midpoint E of the segment joining the endpoints B and D of the two forces. The doubling of this length is easily achieved by defining a segments BC and DC parallel to AD and AB, respectively, to complete the parallelogram ABCD. The diagonal AC of this parallelogram is the sum of the two force vectors. This is known as the parallelogram rule for the addition of forces.

Read more about this topic:  Net Force

Famous quotes containing the words rule, addition and/or forces:

    For all of us Frenchmen, the guiding rule of our epoch is to be faithful to France.
    Charles De Gaulle (1890–1970)

    But the best read naturalist who lends an entire and devout attention to truth, will see that there remains much to learn of his relation to the world, and that it is not to be learned by any addition or subtraction or other comparison of known quantities, but is arrived at by untaught sallies of the spirit, by a continual self-recovery, and by entire humility.
    Ralph Waldo Emerson (1803–1882)

    The most exciting happiness is the happiness generated by forces beyond your control.
    Ogden Nash (1902–1971)