Numerical Approximations For The Normal CDF
The standard normal CDF is widely used in scientific and statistical computing. The values Φ(x) may be approximated very accurately by a variety of methods, such as numerical integration, Taylor series, asymptotic series and continued fractions. Different approximations are used depending on the desired level of accuracy.
- Zelen & Severo (1964) give the approximation for Φ(x) for x > 0 with the absolute error |ε(x)| < 7.5·10−8 (algorithm 26.2.17):
- Hart (1968) lists almost a hundred of rational function approximations for the erfc function. His algorithms vary in the degree of complexity and the resulting precision, with maximum absolute precision of 24 digits. An algorithm by West (2009) combines Hart's algorithm 5666 with a continued fraction approximation in the tail to provide a fast computation algorithm with a 16-digit precision.
- Cody (1969) after recalling Hart68 solution is not suited for erf, gives a solution for both erf and erfc, with maximal relative error bound, via Rational Chebyshev Approximation.
- Marsaglia (2004) suggested a simple algorithm based on the Taylor series expansion
- The GNU Scientific Library calculates values of the standard normal CDF using Hart's algorithms and approximations with Chebyshev polynomials.
Read more about this topic: Normal Distribution
Famous quotes containing the words numerical and/or normal:
“There is a genius of a nation, which is not to be found in the numerical citizens, but which characterizes the society.”
—Ralph Waldo Emerson (18031882)
“Like sleep disturbances, some worries at separation can be expected in the second year. If you accept this, then you will avoid reacting to this anxiety as if its your fault. A mother who feels guilty will appear anxious to the child, as if to affirm the childs anxiety. By contrast, a parent who understands that separation anxiety is normal is more likely to react in a way that soothes and reassures the child.”
—Cathy Rindner Tempelsman (20th century)